INSTRUKCJA
RUCHU I EKSPLOATAJCJI
SIECI PRZESYŁOWEJ

Warunki korzystania, prowadzenia ruchu,
eksploatacji i planowania rozwoju sieci

Wersja 2.1
Tekst jednolity po Karcie aktualizacji CK/1/2012 zatwierdzonej decyzją Prezesa URE
nr DPK-4320-2(16)/2010+2013/LK z dnia 29 stycznia 2013 r.

Tekst obowiązujący od dnia: 1 lutego 2013 r.
SPIS TREŚCI

1. WYKAZ SKRÓTÓW I OZNACZEŃ ORAZ DEFINICJE STOSOWANYCH POJĘĆ .. 8

1.1. Wykaz skrótów i oznaczeń ... 8

1.2. Definicje stosowanych pojęć .. 9

2. PRZYŁĄCZANIE I KORZYSTANIE Z SIECI ... 25

2.1. Charakterystyka sieci ... 25

2.1.1. Struktura sieci zamkniętej .. 25

2.1.1.1. Obszar sieci zamkniętej ... 25

2.1.1.2. Połączenia międzysystemowe .. 26

2.1.1.3. Parametry techniczne sieci i urządzeń .. 27

2.1.2. Wymagania dotyczące parametrów jakościowych energii elektrycznej, mocy biernej oraz niezawodności pracy sieci zamkniętej, w tym wskaźniki charakteryzujące jakość i niezawodność dostaw energii elektrycznej w sieci zamkniętej oraz bezpieczeństwo pracy tej sieci .. 29

2.1.2.1. Częstotliwość ... 29

2.1.2.2. Napięcie i moc bierna .. 30

2.1.2.3. Niezawodność pracy .. 33

2.1.3. Modele sieci zamkniętej .. 36

2.1.3.1. Struktura modelu ... 36

2.1.3.2. Podstawowe modele sieci zamkniętej ... 37

2.2. Przyłączenie do sieci ... 37

2.2.1. Przyłączenie do sieci urządzeń wytwórczych, sieci dystrybucyjnych, urządzeń odbiorców końcowych, połączeń międzysystemowych oraz linii bezpośrednich 37

2.2.1.1. Zasady przyłączenia do sieci przesyłowej OSP ... 37

2.2.1.2. Określenie warunków przyłączenia ... 38

2.2.1.2.1. Wnioski o określenie warunków przyłączenia .. 38

2.2.1.2.2. Warunki przyłączenia i procedura ich określania ... 40

2.2.1.2.3. Zmiana warunków przyłączenia .. 43

2.2.1.3. Umowa o przyłączenie do sieci przesyłowej .. 44

2.2.1.4. Uzgadnianie warunków przyłączenia do sieci oraz zakresu i warunków wykonania ekspertyzy ... 45

2.2.2. Zasady odłączania od sieci .. 47

2.2.3. Wymagania techniczne dla urządzeń, instalacji i sieci wraz z niezbędną infrastrukturą pomocniczą ... 49

2.2.3.1. Zagadnienia ogólne ... 49

2.2.3.2. Wymagania techniczne dla urządzeń, instalacji i sieci odbiorców 50

2.2.3.3. Wymagania i zalecenia techniczne dla urządzeń, instalacji i sieci wytwórców energii elektrycznej ... 52

2.2.3.3.1. Podstawowe wymagania i zalecenia techniczne dla jednostek wytwórczych konwencjonalnych przyłączonych do sieci zamkniętej ... 52
2.2.3.3. Szczegółowe wymagania techniczne dla jednostek wytwórczych konwencjonalnych przyłączonych do sieci zamkniętej
2.2.3.3.1. Wymagania techniczne dla układów regulacji pierwotnej, wtórnej i trójnej oraz automatycznych układów grupowej regulacji napięć jednostek wytwórczych
2.2.3.3.2. Wymagania techniczne dla jednostek wytwórczych w zakresie zdolności do obrony i odbudowy zasilania KSE
2.2.3.3.3. Testy odbiorcze i sprawdzające zdolność jednostek wytwórczych do pracy w regulacji pierwotnej i wtórnej
2.2.3.3.4. Testy odbiorcze i sprawdzające zdolność jednostek wytwórczych do obrony i odbudowy zasilania KSE
2.2.3.3.5. Testy odbiorcze i sprawdzające automatycznych układów grupowej regulacji napięć jednostek wytwórczych
2.2.3.3.6. Wymagania techniczne dla układów elektroenergetycznej automatyki
2.2.3.3.7. Wymagania techniczne dla układów pomiarowo-rozliczeniowych
2.2.3.3.8. Wymagania techniczne dla systemów transmisji i przetwarzania danych
2.2.3.3.9. Monitorowanie i komunikacja farm wiatrowych z OSP
2.2.3.3.10. Testy odbiorcze i sprawdzające funkcje protekcji
2.2.3.3.11. Testy odbiorcze i sprawdzające funkcje automatycznych układów regulacji napięć jednostek wytwórczych

2.2.3.4. Wymagania techniczne dla systemów telekomunikacyjnych
2.2.3.5. Wymagania techniczne dla układów pomiarowych energii elektrycznej
2.2.3.6. Wymagania techniczne dla systemów pomiarowo-rozliczeniowych
2.2.3.7. Wymagania techniczne dla układów elektroenergetycznej automatyki
2.2.3.8. Wymagania techniczne dla sistemów monitorowania parametrów pracy SMPP
2.2.3.9. Wymagania techniczne dla systemów pomiarowych energii elektrycznej
2.2.3.10. Wymagania techniczne dla systemów monitorowania parametrów pracy SMPP

2.3. Korzystanie z sieci elektroenergetycznych
2.3.1. Charakterystyka korzystania z sieci elektroenergetycznych
2.3.2. Charakterystyka i zakres usług przesyłania świadczonych przez OSP……………………107
2.3.3. Usługi przesyłania krajowe...108
2.3.4. Usługi wymiany międzysystemowej..109
2.3.5. Warunki świadczenia przez OSP usług przesyłania; w tym usługi udostępniania KSE..110
 2.3.5.1. Podstawowe warunki świadczenia przez OSP usług przesyłania110
 2.3.5.2. Warunki formalno - prawne świadczenia usług przesyłania.................................110
 2.3.5.2.1. Procedura rozpoczęcia świadczenia usług przesyłania110
 2.3.5.2.2. Wnioski o zawarcie umowy przesyłania ..110
 2.3.5.3. Umowa przesyłania i umowa udostępniania KSE..113
 2.3.5.4. Podstawowe warunki świadczenia przez OSP usług przesyłania
 związanych z wymianą międzysystemową..113
 2.3.5.4.1. Warunki formalno - prawne świadczenia przez OSP usług
 przesyłania związanych z realizacją wymiany
 międzysystemowej...113
 2.3.5.4.2. Kod identyfikacyjny EIC i warunki jego posiadania.................................114
 2.3.5.5. Procedura rozliczeń z tytułu świadczonych przez OSP usług przesyłania
 i usługi udostępniania KSE ...115
 2.3.5.5.1. Postanowienia ogólne ...115
 2.3.5.5.2. Okresy rozliczeniowe oraz przekazywanie i odbiór dokumentów rozliczeniowych ..116
 2.3.5.5.3. Sposób i terminy dokonywania płatności...116
 2.3.5.5.4. Przekroczenie terminu płatności ...117
 2.3.5.5.5. Reklamacje ..117
 2.3.6. Standardy jakościowe obsługi użytkowników systemu..118

3. PLANOWANIE ROZWOJU I WSPÓŁPRACA W CELU
 SKOORDYNOWANIA ROZWOJU SIECI PRZESYŁOWEJ I
 SIECI DYSTRYBUCYJNEJ 110 kV... 120

3.1. Postanowienia ogólne ..120
3.2. Proces planowania rozwoju i współpraca w celu skoordynowania rozwoju sieci
 przesyłowej i sieci dystrybucyjnej 110 kV ...121
3.3. Zakres pozyskiwania i aktualizacji danych i informacji ..123
3.4. Kryteria oceny prac analitycznych w zakresie rozwoju sieci przesyłowej i sieci
 dystrybucyjnej 110 kV ...127
 3.4.1. Informacje wstępne ...127
 3.4.2. Kryteria oceny prac analitycznych ...128
 3.4.2.1. Obliczenia rozpływow mocy w sieci przesyłowej i sieci
 dystrybucyjnej 110 kV ..128
 3.4.2.2. Obliczenia zwarciowe w sieci przesyłowej i sieci dystrybucyjnej 110 kV128
 3.4.2.3. Obliczenia stabilności kątowej w sieci przesyłowej i sieci
 dystrybucyjnej 110 kV ..129
 3.4.3. Ocena wyników prac analitycznych ..129
 3.4.3.1. Techniczna analiza systemowa ..129
 3.4.3.2. Ekspertyza wpływu przyłączenia urządzeń, instalacji lub sieci na KSE......129
3.5. Publikacja i udostępnianie planu rozwoju i wyników analiz rozwojowych130
4. ROZBUDOWA, EKSPLOATACJA I PROWADZENIE RUCHU SIECIOWEGO .. 132

4.1. Rozbudowa i modernizacja sieci przesyłowej...132
 4.1.1. Zasady planowania przedsięwzięć inwestycyjnych...132
 4.1.2. Zasady przyjmowania do eksploatacji obiektów, układów, urządzeń i instalacji132
 4.1.2.1. Warunki przyjęcia do eksploatacji ...132
 4.1.2.2. Zasady organizacji i prowadzenia odbiorów...133
 4.1.2.3. Zasady przeprowadzenia ruchu próbnego przyjmowanych obiektów,
 układów, urządzeń i instalacji ...134

4.2. Eksploatacja sieci przesyłowej...135
 4.2.1. Zasady ogólne eksploatacji sieci przesyłowej ...135
 4.2.2. Struktura organizacyjna prowadzenia eksploatacji i rozbudowy sieci przesyłowej135
 4.2.3. Dokumentacja prawna, techniczna i eksploatacyjna ..138
 4.2.4. Planowanie prac eksploatacyjnych ...139
 4.2.4.1. Zasady opracowywania planów prac eksploatacyjnych139
 4.2.4.2. Ocena stanu technicznego ...140
 4.2.4.3. Planowanie wyłączeń ..141
 4.2.5. Zasady i warunki prowadzenia prac eksploatacyjnych...141
 4.2.5.1. Planowane i doraźne prace eksploatacyjne ...141
 4.2.5.2. Remonty ...141
 4.2.6. Likwidacja skutków awarii i zakłóceń ...142
 4.2.7. Zasady wycofywania obiektów, układów, urządzeń i instalacji z eksploatacji143
 4.2.8. Zasady utrzymania rezerw urządzeń i części zapasowych144
 4.2.9. Bezpieczeństwo i higiena pracy przy wykonywaniu prac ...144
 4.2.10. Ochrona przeciwpożarowa ...145
 4.2.11. Ochrona środowiska naturalnego..145
 4.2.12. Wymagania w zakresie rozbudowy i eksploatacji dla podmiotów przyłączonych
 do sieci przesyłowej ...146

4.3. Prowadzenie ruchu sieciowego ..147
 4.3.1. Zasady ogólne..147
 4.3.2. Struktura organizacyjna prowadzenia ruchu sieciowego...149
 4.3.3. Planowanie koordynacyjne ...152
 4.3.4. Opracowywanie bilansów technicznych mocy w KSE ..155
 4.3.5. Dysponowanie mocą jednostek wtórnych przyłączonych do sieci zamkniętej159
 4.3.6. Planowanie pracy sieci zamkniętej ..163
 4.3.7. Identyfikowanie ograniczeń sieciowych w sieci zamkniętej169
 4.3.8. Prowadzenie operacji łączeniowych w sieci zamkniętej ...170
 4.3.9. Działania regulacyjne w sieci zamkniętej ...171
 4.3.10. Wprowadzanie przerw i ograniczeń w dostarczaniu i poborze energii elektrycznej ...176
 4.3.10.1. Postanowienia ogólne...176
 4.3.10.2. Tryb normalny ..178
 4.3.10.3. Tryb normalny na polecenie OSP...182
4.3.10.4. Tryb awaryjny ... 182
4.3.10.5. Tryb automatyczny .. 184
4.3.10.6. Tryb ograniczenia poziomu napięć 185
4.3.11. Monitorowanie pracy systemu oraz zapobieganie zagrożeniu bezpieczeństwa
 dostaw energii elektrycznej .. 185
4.3.12. Zdalne pozyskiwanie danych pomiarowych 190
 4.3.12.1. Wymagania dotyczące zdalnego pozyskiwania danych pomiarowych 190
 4.3.12.2. Wykaz danych pomiarowych z sieci zamkniętej 191
 4.3.12.3. Wykaz danych pomiarowych pobieranych z elektrowni 192
 4.3.12.4. Wymagania dotyczące jakości danych 193
4.3.13. Systemy wymiany informacji i sterowania wykorzystywane dla prowadzenia
 ruchu sieciowego .. 193
4.3.14. Centralny rejestr jednostek wytwórczych i farm wiatrowych w KSE 194
5. WYMIANA INFORMACJI POMIĘDZY OSP A UŻYTKOWNIKAMI SYSTEMU 199
5.1. Formy wymiany informacji .. 199
 5.1.1. Postanowienia ogólne ... 199
 5.1.2. Strona internetowa OSP ... 200
5.2. Zakres informacji publikowanych przez OSP 200
5.3. Ochrona informacji ... 202
6. SYSTEMY TELEINFORMATYCZNE WYKORZYSTYWANE PRZEZ OSP 204
6.1. System wymiany informacji o rynku energii 204
 6.1.1. Zadania systemu WIRE .. 204
 6.1.2. Architektura systemu WIRE ... 204
 6.1.3. Struktura funkcjonalna i wymagania aplikacyjne WIRE 204
 6.1.4. Zakres przesyłanych informacji przy wykorzystaniu WIRE 205
 6.1.5. Procedury systemu WIRE ... 205
 6.1.5.1. Zakres procedur systemu WIRE 205
 6.1.5.2. Procedura przyłączenia i akceptacji systemu informatycznego WIRE/UR
 do systemów informatycznych OSP dla WIRE/UR i WIRE 205
 6.1.5.3. Procedura zarządzania uprawnieniami archiwum WIRE 206
 6.1.5.4. Procedura testów systemu rezerwowego przekazywania zgłoszeń
 WIRE/RP dla operatorów rynku 206
 6.1.5.5. Procedura testów uzupełniających zakres działania operatorów rynku 206
 6.1.5.6. Procedura wprowadzania zmian w standardach technicznych systemu
 WIRE .. 206
6.2. System operatywnej współpracy z elektrowniami 207
 6.2.1. Zadania systemu SOWE ... 207
 6.2.2. Architektura systemu SOWE ... 207
 6.2.3. Struktura funkcjonalna i wymagania aplikacyjne SOWE 207
 6.2.4. Zakres informacji przekazywanych przy wykorzystaniu SOWE 208
6.2.5. Procedury systemu SOWE ... 208
 6.2.5.1. Zakres procedur systemu SOWE.. 208
 6.2.5.2. Procedura przyłączenia i akceptacji systemu informatycznego SOWE/EL
do systemów informatycznych OSP dla SOWE/EL i SOWE 208
 6.2.5.3. Procedura zarządzania uprawnieniami archiwum systemu SOWE....... 208
 6.2.5.4. Procedura wprowadzania zmian w standardach technicznych systemu
SOWE... 209

6.3. System nadzoru i zarządzania pracą KSE... 209
 6.3.1. Zadania systemu SCADA OSP .. 209
 6.3.2. Architektura systemu SCADA OSP .. 209
 6.3.3. Procedury dla systemu SCADA .. 210
 6.3.3.1. Procedury wymiany informacji ... 210
 6.3.3.2. Zakres informacji w ramach systemu SCADA OSP 210
 6.3.3.3. Procedury przyłączeniowe .. 210

6.4. System monitorowania parametrów pracy... 211
 6.4.1. Zadania systemu SMPP ... 211
 6.4.2. Architektura systemu SMPP .. 211
 6.4.3. Struktura funkcjonalna SMPP .. 211
 6.4.4. Procedury systemu SMPP ... 212
 6.4.4.1. Procedury wymiany informacji ... 212
 6.4.4.2. Procedury przyłączeniowe .. 212
 6.4.4.3. Procedury wprowadzania zmian w strukturze SMPP 212

6.5. Centralny system pomiarowo - rozliczeniowy.. 213
 6.5.1. Zadania systemu CSPR ... 213
 6.5.2. Struktura funkcjonalna CSPR .. 213
 6.5.3. Zakres informacji uzyskiwanych przy wykorzystaniu systemu CSPR 213
 6.5.4. Procedury systemu CSPR ... 213

6.6. Centralny system automatycznej regulacji częstotliwości i mocy 214
 6.6.1. Zadania centralnego systemu automatycznej regulacji częstotliwości i mocy 214
 6.6.2. Architektura centralnego systemu automatycznej regulacji częstotliwości i mocy 215
 6.6.3. Procedury wprowadzania zmian w realizacji automatycznej regulacji
częstotliwości i mocy oraz w standardach centralnego systemu automatycznej
regulacji częstotliwości i mocy ... 215
1. WYKAZ SKRÓTÓW I OZNACZEŃ ORAZ DEFINICJE STOSOWANYCH POJĘĆ

1.1. Wykaz skrótów i oznaczeń

<table>
<thead>
<tr>
<th>Skrót</th>
<th>Oznaczenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARNE</td>
<td>Automatyczna Regulacja Napięcia Elektrowni</td>
</tr>
<tr>
<td>ARST</td>
<td>Automatyczna Regulacja Stacji Transformatorowej</td>
</tr>
<tr>
<td>BPKD</td>
<td>Bieżący Plan Koordynacyjny Dobowy</td>
</tr>
<tr>
<td>BPP</td>
<td>Bieżący Punkt Pracy</td>
</tr>
<tr>
<td>BTHD</td>
<td>Bilans Techniczno - Handlowy Dobowy</td>
</tr>
<tr>
<td>CCO</td>
<td>Centrum Certyfikacji Operatora Systemu Przesyłowego</td>
</tr>
<tr>
<td>CSPR</td>
<td>Centralny System Pomiarowo Rozliczeniowy</td>
</tr>
<tr>
<td>DIR</td>
<td>Dyżurny Inżynier Ruchu</td>
</tr>
<tr>
<td>DIRE</td>
<td>Dyżurny Inżynier Ruchu Elektrowni</td>
</tr>
<tr>
<td>EAZ</td>
<td>Elektroenergetyczna Automatka Zabezpieczeniowa</td>
</tr>
<tr>
<td>EIC</td>
<td>ENTSO-E Identification Code; kod identyfikacyjny nadany przez uprawnione biuro kodów</td>
</tr>
<tr>
<td>ENTSO-E</td>
<td>Europejska Sieć Operatorów Systemów Przesyłowych Energii Elektrycznej</td>
</tr>
<tr>
<td>FPP</td>
<td>Fizyczny Punkt Pomiarowy</td>
</tr>
<tr>
<td>FS</td>
<td>Współczynnik Bezpieczeństwa Przyrządu</td>
</tr>
<tr>
<td>GPZ</td>
<td>Główny Punkt Zasilający</td>
</tr>
<tr>
<td>IRiESP</td>
<td>Instrukcja Ruchu i Eksploatacji Sieci Przesyłowej</td>
</tr>
<tr>
<td>JWCD</td>
<td>Jednostka Wytwórca Centralnie Dysponowana</td>
</tr>
<tr>
<td>JWCK</td>
<td>Jednostka Wytwórca Centralnie Koordynowana</td>
</tr>
<tr>
<td>KDM</td>
<td>Krajowa Dyspozycja Mocy</td>
</tr>
<tr>
<td>KSE</td>
<td>Krajowy System Elektroenergetyczny</td>
</tr>
<tr>
<td>LRW</td>
<td>Lokalna Rezerwa Wyłącznikowa</td>
</tr>
<tr>
<td>LSPR</td>
<td>Lokalny System Pomiarowo - Rozliczeniowy</td>
</tr>
<tr>
<td>nJWCD</td>
<td>Jednostka Wytwórca niebędąca Jednostką Wytwórca Centralnie Dysponowaną</td>
</tr>
<tr>
<td>NN</td>
<td>Najwyższe Napięcie</td>
</tr>
<tr>
<td>OSDn</td>
<td>Operator Systemu Dystrybucyjnego Elektroenergetycznego, którego sieć dystrybucyjna nie posiada bezpośrednich połączeń z sirią przesyłową</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ODM</td>
<td>Obszarowa Dyspozycja Mocy</td>
</tr>
<tr>
<td>OSD</td>
<td>Operator Systemu Dystrybucyjnego Elektroenergetycznego</td>
</tr>
<tr>
<td>OSP</td>
<td>Operator Systemu Przesyłowego Elektroenergetycznego</td>
</tr>
<tr>
<td>PKD</td>
<td>Plan Koordynacyjny Dobowy</td>
</tr>
<tr>
<td>PKM</td>
<td>Plan Koordynacyjny Miesięczny</td>
</tr>
<tr>
<td>PKR</td>
<td>Plan Koordynacyjny Rocny</td>
</tr>
<tr>
<td>P_{min}</td>
<td>Moc minimum technicznego jednostki wytwórczej</td>
</tr>
<tr>
<td>PPW</td>
<td>Praca na potrzeby własne jednostki wytwórczej</td>
</tr>
<tr>
<td>P_{os}</td>
<td>Moc osiągalna jednostki wytwórczej</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Aquisition (system wspomagania dyspozytorskiego)</td>
</tr>
<tr>
<td>SCO</td>
<td>Samoczynne Częstotliwościowe Odczynanie</td>
</tr>
<tr>
<td>SMPP</td>
<td>System Monitorowania Parametrów Pracy</td>
</tr>
<tr>
<td>SN</td>
<td>Średnie Napięcie</td>
</tr>
<tr>
<td>SOWE</td>
<td>System Operatywnej Współpracy z Elektrowniami</td>
</tr>
<tr>
<td>SPZ</td>
<td>Samoczynne Ponowne Załączanie</td>
</tr>
<tr>
<td>UAR</td>
<td>Układ Automatycznej Regulacji</td>
</tr>
<tr>
<td>U_{n}</td>
<td>Napięcie znamionowe</td>
</tr>
<tr>
<td>URE</td>
<td>Urząd Regulacji Energetyki</td>
</tr>
<tr>
<td>WIRE</td>
<td>System Wymiany Informacji o Rynku Energii</td>
</tr>
<tr>
<td>WN</td>
<td>Wysokie Napięcie</td>
</tr>
<tr>
<td>WPKD</td>
<td>Wstępny Plan Koordynacyjny Dobowy</td>
</tr>
</tbody>
</table>

1.2. Definicje stosowanych pojęć

Automatyczna regulacja częstotliwości i mocy

Układ automatycznej regulacji częstotliwości i mocy czynnej w połączonych systemach elektroenergetycznych, uwzględniający jednocześnie kryteria dotrzymania salda wymiany międzysystemowej i utrzymania częstotliwości, zgodnie z określonym algorytmem.

Automatyczna regulacja napięcia elektrowni (ARNE)

Układ automatycznej regulacji napięcia i mocy biernej w węźle wytwórczym.

Automatyczna regulacja stacji transformatorowej (ARST)

Układ automatycznej regulacji napięcia w sieci wykorzystujący regulację napięcia transformatora.
Automatyka przeciwkołysaniowo - odciążająca (APKO)

Układ automatyki zapobiegającej kołysaniem mocy w KSE oraz przeciążeniem elementów sieci poprzez ograniczanie mocy generowanej przez jednostki wytwórcze.

Awaria sieciowa

Zdarzenie ruchowe, w wyniku którego następuje wyłączenie z ruchu synchronicznego części KSE, która produkuje lub pobiera z sieci energię elektryczną w ilości nie większej niż 5% bieżącego zapotrzebowania na moc w KSE.

Awaria techniczna

Gwałtowne, nieprzewidziane uszkodzenie lub zniszczenie obiektu budowlanego, urządzenia technicznego lub systemu urządzeń technicznych powodujące przerwę w ich używaniu lub utratę ich właściwości. Awarią techniczną może być również zdarzenie wywołane działaniem terrorystycznym.

Awaria w systemie

Zdarzenie ruchowe, w wyniku którego następuje wyłączenie z ruchu synchronicznego części KSE, która produkuje lub pobiera z sieci energię elektryczną w ilości powyżej 5% bieżącego zapotrzebowania na moc w KSE.

Awaryjny układ pracy

Przewidywany przez operatora systemu układ pracy sieci elektroenergetycznych, dla przypadku awaryjnego wyłączenia określonych elementów sieciowych.

Bezpieczeństwo dostaw energii elektrycznej

Zdolność systemu elektroenergetycznego do zapewnienia bezpieczeństwa pracy sieci elektroenergetycznej oraz równoważenia dostaw energii elektrycznej z zapotrzebowaniem na tę energię.

Bezpieczeństwo pracy sieci elektroenergetycznej

Nieprzerwana praca sieci elektroenergetycznej, a także spełnianie wymagań w zakresie parametrów jakościowych energii elektrycznej i standardów jakościowych obsługi odbiorców, w tym dopuszczalnych przerw w dostawach energii elektrycznej odbiorcom końcowym, w możliwych do przewidzenia warunkach pracy tej sieci.

Bilans techniczny mocy

Zestawienie liczbowe planowanych lub zrealizowanych wartości podaży i popytu na moc elektryczną.

Blok gazowo - parowy

Zespół urządzeń składający się z turbiny gazowej, kotła odzysknicowego, turbiny parowej oraz generatora (generatorów). W urządzeniu tym energia chemiczna zawarta w paliwie gazowym przekształcana jest na energię mechaniczną turbiny gazowej, a wytworzona w tym procesie energia cieplna służy do wytworzenia, w kotle odzysknicowym, pary wykorzystywanej przez turbinę parową oraz do celów cieplnich. W skład zespołu może wchodzić więcej niż jedna turbina gazowa, parowa oraz generatory synchroniczne, jednakże wszystkie te urządzenia powiązane są wzajemnie poprzez proces technologiczny i spełniają definicje jednostki wytwórczej.
Centralny system automatycznej regulacji częstotliwości i mocy

Centralny system regulacyjny wykorzystywany przez operatora systemu przesyłowego do prowadzenia automatycznej regulacji częstotliwości i mocy wymiany między systemowej pomiędzy KSE a pozostałą częścią systemu synchronicznego kontynentalnej Europy, poprzez automatyczną aktywację na jednostkach wtórnych współpracujących z regulatorem centralnym mocy w ramach regulacji wtórnej lub trójnej.

Centralny System Pomiarowo Rozliczeniowy (CSPR)

System informatyczny OSP dedykowany do wyznaczania ilości dostaw energii elektrycznej do celów rozliczeniowych.

Czas rozruchu

Czas od momentu wydania polecenia uruchomienia do osiągnięcia przez jednostkę wytwórczą mocy minimum technicznego.

Działania regulacyjne

Czynności obejmujące w szczególności:

1. zmianę wytwarzania mocy czynnej lub biernej przez jednostki wytwórcze,
2. pracę w zaniżeniu lub w przeciążeniu jednostek wytwórczych,
3. zmianę nastaw układu ARNE, regulatora centralnego oraz innych automatyków zainstalowanych w systemie,
4. załączanie lub wyłączanie regulacji pierwotnej lub wtórnej jednostek wytwórczych,
5. załączanie lub wyłączanie układu ARNE,
6. wykorzystanie szybkich rezerw mocy, w tym jednostek wytwórczych pompowo-szczytowych,
7. załączanieäułów i kondensatorów,
8. załączanie elementów sieci (linii, transformatorów),
9. synchronizację z siecią jednostek wytwórczych,
10. zmianę zaczepów transformatorów,
11. zmianę trybów regulacji i wartości zadanych układów regulacji i automatyk.

Doba operatywna

Okres od godz. 0:00 do godz. 24:00, w którym następuje realizacja planów pracy sieci i jednostek wytwórczych.

Doraźne prace eksploatacyjne

Nieplanowane prace w zakresie eksploatacji obiektów, urządzeń i instalacji systemu elektroenergetycznego, związane z usuwaniem drobnych usterek lub zapobieganiem powstawaniu awarii i zakłóceń.
Dystrybucja	Transport energii elektrycznej sieciami dystrybucyjnymi w celu jej dostarczania odbiorcom z wyłączeniem sprzedaży tej energii.
Dzień roboczy	Okres od godziny 0:00 do godziny 24:00 każdego dnia, który nie jest sobotą lub dniem ustawowo wolnym od pracy.
Eksplotacja sieci przesyłowej	Zespół działań utrzymujących zdolność sieci przesyłowej do niezawodnej pracy i zasilania odbiorców oraz współpracy z innymi sieciami.
Energia dostarczona	Energia elektryczna stanowiąca różnicę pomiędzy energią oddaną i pobraną w miejscu dostarczania.
Energia oddana	Energia elektryczna wprowadzona do sieci w miejscu dostarczania.
Energia pobrana	Energia elektryczna odebrana z sieci w miejscu dostarczania.
ENTSO-E/UCTE Operation Handbook	Instrukcja pracy połączonych systemów obejmująca zbiór zasad i przepisów technicznych, dotyczących pracy wzajemnie połączonych sieci elektroenergetycznych, przyjętych jako obowiązujące na podstawie Wielostronnej Umowy (Multilateral Agreement) przez operatorów systemów przesyłowych elektroenergetycznych zrzeszonych w ramach Unii Koordynacji ds. Przesyłu Energii Elektrycznej (UCTE), a po jej rozwiązaniu działających w Grupie Regionalnej „Continental Europe” w ramach ENTSO-E, który to zbiór podlega zmianom zgodnie z właściwymi procedurami ww. Grupy Regionalnej „Continental Europe”.

Europejska sieć operatorów systemów przesyłowych energii elektrycznej (ENTSO-E)
European Network of Transmission System operators for Electricity (ENTSO-E)

Międzynarodowe stowarzyszenie operatorów systemów przesyłowych energii elektrycznej współpracujących na poziomie Wspólnoty Europejskiej aby:

1) promować dokończenie budowy i funkcjonowanie rynku wewnętrznego energii elektrycznej i transgraniczny handel energią elektryczną;

2) zapewnić optymalne zarządzanie europejską siecią przesyłową energii elektrycznej, jej skoordynowaną eksplotacją oraz jej właściwy rozwój techniczny;

tj. realizować cele określone rozporządzeniem (WE) nr 714/2009 Parlamentu Europejskiego i Rady z dnia 13 lipca 2009 r. w sprawie warunków dostępu do sieci w odniesieniu do transgranicznej wymiany energii elektrycznej i uchylające rozporządzenie (WE) nr 1228/2003 (Dz. Urz. UE L 211 z 14.08.2009, str. 15 - 35) zgodnie z przepisami tego rozporządzenia i postanowieniami statutu stowarzyszenia.
Farma wiatrowa
Zespół jednostek wytwarzających (turbin wiatrowych) wykorzystujących do wytwarzania energii elektrycznej energię wiatru, przyłączonych do sieci w jednym miejscu przyłączenia.

Fizyczny Punkt Pomiarowy (FPP)
Miejsce w sieci, urządzeniu lub instalacji, w którym jest dokonywany pomiar przepływającej energii elektrycznej.

Grafik wymiany międzysystemowej
Dane handlowe pokazujące planowaną realizację umowy sprzedaży energii elektrycznej w obrocie transgranicznym, w każdej godzinie doby handlowej.

Hydrozespół
Jednostka wytwórcza elektrowni wodnej.

Informacja dyspozytorska
Przekazywanie danych pomiędzy służbami dyspozytorskimi o wydarzeniach, zmianach układów połączeń, urządzeń i instalacji oraz zmianach parametrów, które mogą mieć wpływ i znaczenie przy prowadzeniu ruchu systemu elektroenergetycznego.

Jednostka wytwórcza
Opisany poprzez dane techniczne i handlowe wyodrębniony zespół urządzeń należących do przedsiębiorstwa energetycznego, służący do wytwarzania energii elektrycznej i wyprowadzania mocy. Jednostka wytwórcza obejmuje zatem także transformatory blokowe oraz linie blokowe wraz z łącznikami w miejscu przyłączenia jednostki do sieci.

Jednostka wytwórcza centralnie dysponowana (JWCD)
Jednostka wytwórcza przyłączona do sieci przesyłowej lub koordynowanej sieci 110 kV, podlegająca centralnemu dysponowaniu przez OSP.

Jednostka wytwórcza centralnie koordynowana (JWCK)
Jednostka wytwórcza, której praca podlega koordynacji przez OSP.

Jednostka wytwórcza nie będąca jednostką wytwórczą centralnie dysponowaną (nJWCD)
Jednostka wytwórcza nie podlegająca centralnemu dysponowaniu przez OSP.

Jednostka wytwórcza po modernizacji
Jednostka wytwórcza, której w następstwie działań modernizacyjnych zmieniono parametry techniczne w stosunku do tych, które posiadała przed modernizacją.

Katastrofa naturalna
Zdarzenie związane z działaniem sił natury, w szczególności wyładowania atmosferyczne, wstrząsy sejsmiczne, silne wiatry, intensywne opady atmosferyczne, długotrwałe występowanie ekstremalnych temperatur, osuwiska ziemi, pożary, susze, powodzie, zjawiska lodowe na rzekach i morzu oraz jeziorach i zbiornikach wodnych, masowe występowanie szkodników, chorób roślin lub zwierząt albo chorób zakaźnych ludzi albo też działanie innego żywiołu.
Kod identyfikacyjny EIC

Kod identyfikacyjny ENTSO-E jednoznacznie identyfikujący Uczestnika Wymiany Międzysystemowej (UWM) na europejskim rynku energii elektrycznej i nadawany przez Biuro Kodów ENTSO-E lub lokalne Biuro Kodów EIC.

Konwencjonalna jednostka wytwórcza

Jednostka wytwórcza wykorzystująca do wytwarzania energii elektrycznej paliwa (stałe, gazowe lub ciekłe) lub wodę.

Koordynowana sieć 110 kV

Część sieci dystrybucyjnej 110 kV, w której przepływy energii elektrycznej zależą także od warunków pracy sieci przesyłowej.

Krajowy system elektroenergetyczny (KSE)

System elektroenergetyczny na terenie kraju.

Krzywa obciążenia

Graficzne przedstawienie zmian obciążenia w funkcji czasu.

Lokalne biuro kodów EIC

Biuro nadające kody identyfikacyjne EIC mające autoryzację Centralnego Biura Kodów ENTSO-E

Miejsce dostarczania

Punkt w sieci, do którego przedsiębiorstwo energetyczne dostarcza energię elektryczną, określony w umowie o przyłączenie do sieci albo w umowie o świadczenie usług przesyłania lub dystrybucji, będący jednocześnie miejscem jej odbioru.

Miejsce przyłączenia

Punkt w sieci, w którym przyłącze łączy się z siecią.

Minimum techniczne jednostki wytwórczej

Moc czynna wytwarzana przez jednostkę wytwórczą w sposób ciągły przy minimalnym poziomie dostarczania energii pierwotnej wymaganej do stabilnej i trwałej pracy jednostki wytwórczej, przy zachowaniu zdolności do regulacji pierwotnej i wtórnej.

Moc dyspozycyjna elektrowni krajowych

Suma mocy dyspozycyjnej JWCD i nJWCD.

Moc dyspozycyjna jednostki wytwórczej

Moc osiągalna pomniejszona o ubytki mocy.

Moc dyspozycyjna OSP

Suma mocy dyspozycyjnej JWCD i obciążenia nJWCD.

Moc osiągalna jednostki wytwórczej

Maksymalna moc czynna, przy której jednostka wytwórcza może pracować przez czas nieograniczony bez uszczerbku dla trwałości tej jednostki przy parametrach nominalnych, potwierdzona testami.

Katastrofą naturalną może być również zdarzenie wywołane działaniem terrorystycznym.
Moc przyłączeniowa

Moc czynna planowana do pobierania lub wprowadzania do sieci, określona w umowie o przyłączenie do sieci jako wartość maksymalna wyznaczana w ciągu każdej godziny okresu rozliczeniowego ze średnich wartości tej mocy w okresach 15-minutowych, służąca do zaprojektowania przyłącza.

Moc wytwarzana

Moc chwilowa na zaciskach jednostki wytwórczej lub suma mocy chwilowych jednostek wytwórczych wytwórcy.

Moc znamionowa

Największa trwała wielkość mocy elektrycznej, która może być wytwarzana, przenoszona lub oddawana przez dane urządzenie elektroenergetyczne, określona przez jego producenta.

Moc znamionowa farmy wiatrowej

Wartość mocy elektrycznej czynnej będąca sumą mocy znamionowych poszczególnych jednostek wytwórczych (turbin wiatrowych) wchodzących w skład farmy wiatrowej.

Najwyższe napięcie (NN)

Napięcie 220 kV lub wyższe.

Napięcie znamionowe

Wartość napięcia, przy którym producent przewidział pracę danego urządzenia.

Normalny stan pracy sieci

Stan pracy sieci elektroenergetycznej, w którym wartości wszystkich jej parametrów są zachowane w dopuszczalnych przedziałach i spełnione są wszystkie kryteria bezpieczeństwa jej pracy.

Normalny układ pracy

Układ pracy sieci i przyłączonych źródeł wytwórczych, zapewniający najkorzystniejsze warunki techniczne i ekonomiczne transportu energii elektrycznej oraz spełnienie kryteriów niezawodności pracy sieci i jakości energii elektrycznej dostarczanej użytkownikom systemu.

Obiekt elektroenergetyczny

Obiekt zawierający układy, urządzenia, instalacje elektroenergetyczne, przeznaczone do wytwarzania, przesyłania, przetwarzania, dystrybucji i odbioru energii elektrycznej, łącznie ze służącymi im budynkami.

Obiektowe układy regulacji

Układy automatycznej regulacji pierwotnej, wtórnej, trójnej zainstalowane na jednostce wytwórczej.

Odbiorca

Każdy, kto otrzymuje lub pobiera energię elektryczną na podstawie umowy z przedsiębiorstwem energetycznym.

Odbiorca końcowy

Odbiorca dokonujący zakupu energii elektrycznej na własny użytek; do własnego użytku nie zalicza się energii elektrycznej zakupionej w celu jej zużycia na potrzeby wytwarzania, przesyłania lub dystrybucji.
Operacja ruchowa
Jakakolwiek programowa zmiana:
(1) stanu pracy urządzenia,
(2) układu połączeń,
(3) nastaw regulacyjnych,
(4) nastaw sterowniczych.

Operacje łączeniowe
Operacje łączeniowe obejmują w szczególności:
(1) załączenie lub wyłączenie: linii, transformatora, dławika, baterii kondensatorów;
(2) przełączenie urządzeń na systemach szyn zbiorczych w rozdzielni;
(3) przełączenie zasilania potrzeb własnych jednostki wytwórczej z podstawowego na rezerwowe;
(4) załączenie lub wyłączenie hydrogeneratorów do/z pracy kompensacyjnej.

Operator systemu
Operator systemu przesyłowego elektroenergetycznego lub operator systemu dystrybucyjnego elektroenergetycznego.

Operator systemu dystrybucyjnego elektroenergetycznego (OSD)
Przedsiębiorstwo energetyczne zajmujące się dystrybucją, odpowiedzialne za ruch sieciowy w systemie dystrybucyjnym elektroenergetycznym, bieżące i długookresowe bezpieczeństwo funkcjonowania tego systemu, eksploatację, konserwację, remonty oraz niezbędną rozbudowę sieci dystrybucyjnej, w tym połączeń z innymi systemami elektroenergetycznymi.

Operator systemu przesyłowego elektroenergetycznego (OSP)
Przedsiębiorstwo energetyczne zajmujące się przesyłaniem, odpowiedzialne za ruch sieciowy w systemie przesyłowym elektroenergetycznym, bieżące i długookresowe bezpieczeństwo funkcjonowania tego systemu, eksploatację, konserwację, remonty oraz niezbędną rozbudowę sieci przesyłowej, w tym połączeń z innymi systemami elektroenergetycznymi.

Pasmo regulacji wtórnej
Obszar nastawienia zmian mocy w jednostkach wytwórczych w ramach regulacji wtórnej, przy których regulator wtórny może interweniować automatycznie w obu kierunkach od bazowego punktu pracy.

Plan Koordynacyjny Dobowy (PKD)
Plan koordynacyjny tworzony przez OSP w dobie n-1 dla każdej godziny doby n z wykorzystaniem Algorytmu Rozdziału Obciążeń, który zapewnia dobór Jednostek Grafikowych Wytwarzających, uczestniczących w Rynku Bilansującym, w oparciu o zgłoszone dane handlowe i techniczne w ofertach bilansujących, przy uwzględnieniu ograniczeń systemowych i niezbędnej rezerwy mocy w KSE.
oraz równoprawność uczestników rynku i zgłoszonych do fizycznej realizacji Umów Sprzedaży Energii. Plan Koordynacyjny Dobowy zawiera plan pracy JWCD na każdą z 24 godzin doby, uwzględniając zbilansowanie dobowej prognozy zapotrzebowania, wymagane rezerwy i występujące w KSE ograniczenia systemowe.

Polecenie dyspozytorskie

Polecenie wydane przez służbę dyspozytorską, dotyczące wykonania określonych operacji ruchowych lub działań sprawdzających w danym obiekcie elektroenergetycznym.

Potrzeby ogólne elektrowni

Grupa urządzeń i układów technologicznych, wspólna dla wszystkich lub części jednostek wytwórnych w elektrowni, niezbędna do realizacji procesu wytwarzania energii elektrycznej w elektrowni oraz inne urządzenia nie związane bezpośrednio z procesem wytwarzania energii elektrycznej.

Potrzeby własne jednostki wytwórczej

Grupa urządzeń i układów technologicznych pojedynczej jednostki wytwórczej, niezbędna do realizacji procesu wytwarzania energii elektrycznej.

Praca w przeciążeniu jednostki wytwórczej

Praca jednostki wytwórczej z obciążeniem powyżej mocy osiągalnej.

Praca w zaniku jednostki wytwórczej

Praca jednostki wytwórczej z obciążeniem poniżej minimum technicznego.

Praca wydzielona

Samodzielna, stabilna praca jednostki wytwórczej, lub kilku jednostek wytwórnych, w obrębie elektrowni przy braku zasilania z KSE, polegająca na zasilaniu potrzeb własnych i niezbędnych do pracy potrzeb ogólnych elektrowni oraz realizowaniu poleceń OSP dotyczących zwiększenia obszaru wydzielonego.

Praca wyspowa

Samodzielna praca części KSE wydzielonej po jej awaryjnym odczynieniu się z KSE, z co najmniej jedną pracującą jednostką wytwórczą, która w sytuacji odczynienia od KSE jest w stanie zasilać odbiorców oraz inne jednostki wytwórcze.

Program łączeniowy specjalny

Program złożonych operacji łączeniowych realizowanych w związku z wykonywanymi pracami sieciowymi lub próbami systemowymi.

Próba systemowa

Badania funkcjonalne mające na celu ocenę stanu technicznego systemu elektroenergetycznego lub jego części, na podstawie jego zachowania się w warunkach imitujących warunki normalne pracy lub warunki występujące w czasie możliwych zakłóceń.
Przesyłanie

Transport energii elektrycznej sieciami przesyłowymi w celu jej dostarczania do sieci dystrybucyjnych lub odbiorcom końcowym przyłączonym do sieci przesyłowych z wyłączeniem sprzedaży tej energii.

Przyłącze

Odcinek lub element sieci służący do połączenia urządzeń, instalacji lub sieci podmiotu, o wymaganej przez niego mocy przyłączeniowej z pozostałą częścią sieci przesyłości energetycznej świadczącej na rzecz tego podmiotu usługę polegającą na przesyłaniu lub dystrybucji.

Regulacja częstotliwości

Regulacja w systemie elektroenergetycznym mająca za zadanie utrzymanie stałej wartości częstotliwości lub ograniczenie odchylenia czasu synchronicznego od astronomicalnego do granic dopuszczalnych.

Regulacja pierwotna

Regulacja mocy jednostki produkcyjnej za pomocą indywidualnego regulatora prędkości obrotowej w funkcji częstotliwości sieci.

Regulacja trójna

Automatyczne lub ręczne przesuwanie punktów pracy jednostek produkcyjnych w celu zmiany ich wirującej mocy, wokół której działa regulacja pierwotna i wtórną.

Regulacja wtóra

Regulacja częstotliwości i mocy w systemie elektroenergetycznym realizowana za pomocą skoordynowanego oddziaływania na poziom generacji mocy czynnej jednostek produkcyjnych celem utrzymania częstotliwości i mocy w systemie elektroenergetycznym na zadany poziomie. Regulacja wtóra jest realizowana w warunkach normalnej pracy systemu automatycznie poprzez skoordynowane oddziaływanie regulatora centralnego na indywidualne regulatorzy wybranych jednostek produkcyjnych w ramach centralnego systemu automatycznej regulacji częstotliwości i mocy. W stanach awaryjnych pracy KSE regulacja wtóra może być realizowana w sposób manualny, zgodnie z odrębnymi procedurami.

Regulator centralny

Jednostka centralna systemu automatycznej regulacji częstotliwości i mocy.

Regulator centralny ARCM

Jednostka centralna systemu automatycznej regulacji częstotliwości i mocy, wysyłająca wspólny sygnał regulacyjny zmiany mocy czynnej do jednostek produkcyjnych.

Regulator centralny LFC

Jednostka centralna systemu automatycznej regulacji częstotliwości i mocy, wysyłająca indywidualne sygnały regulacyjne zmiany mocy czynnej do jednostek produkcyjnych.
Rezerwa mocy w elektrowniach krajowych

Wyznaczona dla danego okresu nadwyżka sumy mocy dyspozycyjnej jednostek wytwórczych pomniejszona o ubytki mocy wynikające z warunków pracy sieci, nad zapotrzebowaniem do pokrycia przez elektrownie krajowe.

Rezerwa mocy OSP

Wyznaczona dla danego okresu nadwyżka mocy dyspozycyjnej OSP nad zapotrzebowaniem do pokrycia przez elektrownie krajowe.

Równoważenie dostaw energii elektrycznej z zapotrzebowaniem na tę energię

Zaspojonej możliwe do przewidzenia, bieżącego i perspektywicznego zapotrzebowania odbiorców na energię elektryczną i moc, bez konieczności podejmowania działań mających na celu wprowadzenie ograniczeń w jej dostarczaniu i poborze.

Ruch próbny

Nieprzerwana praca uruchamianych urządzeń, instalacji lub sieci, przez ustalony okres z określonymi parametrami pracy.

Rynek bilansujący

Mechanizm bieżącego bilansowania zapotrzebowania na energię elektryczną i wytwarzania tej energii w KSE.

Samoczynne częstotliwościowe odciążanie (SCO)

Samoczynne włączenie zdefiniowanych grup odbiorców w przypadku obniżenia się częstotliwości do określonej wielkości, spowodowanego deficytem mocy w systemie elektroenergetycznym.

SCADA

System informatyczny służący do gromadzenia, przetwarzania i wizualizacji danych o bieżącej pracy KSE oraz inicjacji procedur zdalnych operacji ruchowych, łączeniowych i czynności sterowniczych.

Sieć dystrybucyjna

Sieć elektroenergetyczna wysokich, średnich i niskich napięć, za której ruch sieciowy jest odpowiedzialny OSD.

Sieć elektroenergetyczna

Instalacje połączone i współpracujące ze sobą, służące do przesyłania lub dystrybucji, należące do przedsiębiorstwa energetycznego lub użytkownika systemu.

Sieć przesyłowa

Sieć elektroenergetyczna najwyższych lub wysokich napięć, za której ruch sieciowy jest odpowiedzialny OSP.

Sieć zamknięta

Sieć przesyłowa i koordynowana sieć 110 kV.

Siła wyższa

Zdarzenie nagle, nieprzewidywalne i niezależne od woli stron, uniemożliwiające w całości lub części wywiązywanie się ze zobowiązań umownych, na stałe lub na pewien czas, którego skutkom nie można zapobiec, ani przeciwdziałać przy zachowaniu należytej staranności. Przejawami siły wyższej są w szczególności:

(1) klęski żywiołowe, w tym pożar, powódź, susza, trzęsienie ziemi, huragan, sztorm;
(2) akty władzy państwowej, w tym stan wojenny, stan wyjątkowy, embarga, blokady, itp.;

(3) działania wojenne, akty sabotażu, akty terroryzmu;

(4) strajki powszechne lub inne niepokoje społeczne, w tym publiczne demonstracje, lokauty.

<table>
<thead>
<tr>
<th>Służba dyspozytorska lub ruchowa</th>
<th>Komórka organizacyjna przedsiębiorstwa elektroenergetycznego uprawniona do prowadzenia ruchu sieci i kierowania pracą jednostek wytwórczych.</th>
</tr>
</thead>
<tbody>
<tr>
<td>System monitorowania parametrów pracy (SMPP)</td>
<td>System monitorowania parametrów pracy dedykowany do monitorowania pracy jednostek wytwórczych na potrzeby operatywnego prowadzenia ruchu KSE, oceny ich pracy regulacyjnej oraz dokonywania analiz pracy systemu elektroenergetycznego.</td>
</tr>
<tr>
<td>Stabilność kątowa dla dużych zakłóceń (równowaga dynamiczna)</td>
<td>Zdolność systemu do zachowania pracy synchronicznej jednostek wytwórczych przy dużych zakłócenach stanu pracy (o dużej amplitudie i szybko narastających).</td>
</tr>
<tr>
<td>Stabilność kątowa dla małych zakłóceń (równowaga statyczna)</td>
<td>Zdolność systemu do zachowania pracy synchronicznej jednostek wytwórczych przy małych zakłócenach stanu pracy (o malej amplitudie i wolno narastających).</td>
</tr>
<tr>
<td>Stabilność napięciowa</td>
<td>Zdolność systemu do utrzymania prawidłowych oraz stabilnych napięć.</td>
</tr>
<tr>
<td>Statyzm regulatora</td>
<td>Stosunek względnej zmiany częstotliwości do odpowiadającej jej względnej zmiany mocy wytwarzanej, przy niezmienionym nastawieniu regulatora jednostki wytwórczej.</td>
</tr>
<tr>
<td>Statyzm regulatora napięcia</td>
<td>Stosunek względnej zmiany napięcia regulowanego do względnej zmiany mocy biernej w danym punkcie pracy w stanie ustalonym.</td>
</tr>
<tr>
<td>Synchronizacja z siecią</td>
<td>Operacja ruchowa polegająca na połączeniu z systemem elektroenergetycznym jednostki wytwórczej lub połączeniu różnych systemów elektroenergetycznych po wyrównaniu częstotliwości, fazy i napięcia, prowadzącym do zmniejszenia różnicy wektorów łączonych napięć do wielkości bliskiej zeru.</td>
</tr>
<tr>
<td>System automatycznej rejestracji danych</td>
<td>Zestaw urządzeń realizujący funkcję automatycznego odczytu i zapisu wielkości mierzonych przez układy pomiarowe wyposażony w porty komunikacyjne do zdalnej transmisji danych</td>
</tr>
<tr>
<td>System elektroenergetyczny</td>
<td>Sieci elektroenergetyczne oraz przyłączone do nich urządzenia i instalacje, współpracujące z siecią.</td>
</tr>
</tbody>
</table>
System Operatywnej Współpracy z Elektrowniami (SOWE)

System umożliwiający OSP komunikację pomiędzy służbami ruchowymi elektrowni i bezpośrednie przekazywanie do służb ruchowych wytwórców przez służby ruchowe OSP planów obciążeń jednostek wytwórczych na okresy 15 minutowe i poleceń ruchowych.

System pomiarowo - rozliczeniowy

Teleinformatyczny system pozyskiwania, przetwarzania i udostępniania danych pomiarowych i pomiarowo - rozliczeniowych pochodzących z systemu zdalnego odczytu danych pomiarowych, systemów automatycznej rejestracji danych oraz z innych systemów.

System Wymiany Informacji o Rynku Energii (WIRE)

System teleinformatyczny dedykowany do wymiany informacji handlowych, technicznych, pomiarowych i rozliczeniowych rynku bilansującego oraz regulacyjnych usług systemowych, pomiędzy służbami handlowymi oraz technicznymi OSP i Operatorów Rynku.

System zdalnego odczytu danych pomiarowych

Podsystem systemu pomiarowo - rozliczeniowego realizujący funkcję zdalnego pozyskiwania danych pomiarowych z układów pomiarowych wyposażonych w system automatycznej rejestracji danych.

Średnie napięcie (SN)

Napięcie wyższe od 1 kV i niższe od 110 kV.

Uchyb regulacji

Różnica między wartością pomierzoną wielkości regulowanej i wartością zadaną tej wielkości w danym momencie czasu.

Uczestnik Wymiany Między systemowej

Uczestnik Rynku Bilansującego, który zawarł umowę o świadczenie usług przesyłania z OSP regulującą w szczególności warunki uczestnictwa w Wymianie Między systemowej.

Układ pomiarowo - rozliczeniowy

Liczniki i inne urządzenia pomiarowe lub pomiarowo – rozliczeniowe, w szczególności: liczniki energii czynnej, liczniki energii biernej oraz przekładniki prądowe i napięciowe, a także ułady połączeń między nimi, służące bezpośrednio lub pośrednio do pomiarów energii elektrycznej i rozliczeń za tę energię.

Układ pomiarowo - rozliczeniowy podstawowy

Układ pomiarowo - rozliczeniowy, którego wskazania stanowią podstawę do rozliczeń ilościowych i wartościowych.

Układ pomiarowo - rozliczeniowy rezerwowy

Układ pomiarowo - rozliczeniowy, którego wskazania stanowią podstawę do rozliczeń ilościowych i wartościowych w przypadku nieprawidłowego działania układu pomiarowo - rozliczeniowego podstawowego.
Układ pomiarowy
Liczniki i inne urządzenia pomiarowe oraz przekładniki prądowe i napięciowe, a także układy połączeń między nimi, służące bezpośrednio lub pośrednio do pomiarów energii elektrycznej.

Układ pomiarowy bilansowo - kontrolny
Układ pomiarowy, którego wskazania stanowią podstawę do monitorowania prawidłowości wskaźników układów pomiarowo - rozliczeniowych poprzez porównywanie zmierzonych wielkości lub bilansowanie obiektów elektroenergetycznych lub obszarów sieci.

Układ regulacji napięcia wzbudzenia
Zestaw urządzeń do regulacji napięcia lub mocy biernie na zaciskach jednostki wytwórczej, poprzez zmianę prądu wzbudzenia.

Układ telemechaniki
Zespół urządzeń służących do zbierania i zdalnego przesyłu informacji w systemie elektroenergetycznym, obejmujący telemetrię (przesył pomiarów), telesygnalizację (przesył sygnałów dyskretnych), telesterowanie (przesył poleceń), bądź innych informacji specjalnych.

Układ wzbudzenia
Układ służący do wytwarzania prądu magnesującego jednostki wytwórczej.

Umowa przesyłania
Umowa o świadczenie usług przesyłania energii elektrycznej na podstawie której, OSP świadczy użytkownikowi systemu usługi przesyłania energii elektrycznej.

Umowa udostępniania KSE
Umowa o świadczenie usługi udostępniania krajowego systemu elektroenergetycznego na podstawie której, OSP świadczy użytkownikowi systemu usługę udostępniania krajowego systemu elektroenergetycznego.

Usługi systemowe
Usługi świadczone na rzecz OSP, niezbędne do zapewnienia przez OSP prawidłowego funkcjonowania KSE, niezawodności jego pracy i utrzymywania parametrów jakościowych energii elektrycznej.

Użytkownik systemu
Podmiot dostarczający energię elektryczną do systemu elektroenergetycznego lub podmiot zaopatrzywany z tego systemu, w tym odbiorca.

Wniosek o określenie warunków przyłączenia
Dokument składany przez podmiot ubiegający się o przyłączenie urządzeń, instalacji i sieci do sieci przedsiębiorstwa energetycznego zajmującego się przesyłaniem lub dystrybucją energii elektrycznej.
Współczynnik bezpieczeństwa przyrządu (FS) - Stosunek znamionowego prądu bezpiecznego przyrządu do znamionowego prądu pierwotnego. Przy czym znamionowy prąd bezpieczny przyrządu określa się jako wartość skuteczną minimalnego prądu pierwotnego, przy którym błąd całkowity przekładnika pradowego do pomiarów jest równy lub większy niż 10% przy obciążeniu znamionowym.

Współczynnik tg φ - Stosunek mocy biernej do mocy czynnej.

Wykres kołowy generatora - Wykres przedstawiający dopuszczalny teoretycznie obszar pracy generatora, określający m.in. obciążenia mocą bierną generatora.

Wyłącznik blokowy - Wyłącznik zainstalowany po stronie wyższego napięcia transformatora blokowego, w torze wyprowadzenia mocy z jednostki wytwórczej, łączący transformator blokowy z linią blokową.

Wyłącznik generatorowy - Wyłącznik zainstalowany po stronie niższego napięcia transformatora blokowego, w torze wyprowadzenia mocy z jednostki wytwórczej, łączący generator z transformatorem blokowym.

Wyłącznik sieciowy - Wyłącznik zainstalowany w torze wyprowadzenia mocy z jednostki wytwórczej, łączący linię blokową z systemem szyn rozdzielni, do której przyłączona jest jednostka wytwórcza.

Wytwórca - Przedsiębiorstwo energetyczne zajmujące się wytwarzaniem energii elektrycznej, którego urządzenia wytwórcze przyłączone są do sieci elektroenergetycznej.

Zabieg eksploatacyjny - Zespół planowych i nieplanowych czynności wykonanych na obiekcie, urządzeniu, układzie lub instalacji elektroenergetycznej w zakresie wynikającym ze szczegółowych instrukcji eksploatacji tego obiektu, urządzenia, układu lub instalacji.

Zagrożenie bezpieczeństwa dostaw energii elektrycznej - Stan KSE lub jego części, uniemożliwiający zapewnienie bezpieczeństwa pracy siect elektroenergetycznej lub równoważenie dostaw energii elektrycznej z zapotrzebowaniem na tę energię.

Zakłócenie - Nieplanowane wyłączenie samoczynne lub ręczne, albo niedotrzymanie oczekiwanych parametrów pracy elementów majątku sieciowego. Zakłócenie może zaistnieć z uszkodzeniem elementu majątku sieciowego lub bez uszkodzenia.

Zakres regulacji wtórnej - Obszar nastawienia zmian mocy w jednostkach wytwórczych w ramach regulacji wtórnej, przy których regulator wtórny może intervenować automatycznie w obu kierunkach od aktualnego punktu pracy.
Zapas stabilności napięciowej
Wyrażony w procentach iloraz:

\[ZSN = \frac{P_{\text{max}} - P_0}{P_0} \times 100\% \]

gdzie:

\(P_0 \) - zapotrzebowanie na moc w KSE w stanie wyjściowym,

\(P_{\text{max}} \) - zapotrzebowanie na moc w KSE, przy którym następuje załamanie napięć.

Zapotrzebowanie do pokrycia przez elektrownie krajowe
Zapotrzebowanie na moc w KSE
Zapotrzebowanie na moc w KSE
Zapotrzebowanie do pokrycia przez elektrownie krajowe
Zapotrzebowanie na moc w KSE
Suma mocy czynnej pobranej przez wszystkich odbiorców krajowych, mocy czynnej potrzeb ogólnych elektrowni, potrzeb własnych jednostek wytwórczych oraz strat sieciowych.

Zdalne sterowanie
Sterowanie pracą urządzeń realizowane przez służbę dyspozytorską właściwego operatora systemu za pomocą dedykowanych urządzeń telekomunikacyjnych.

Zdarzenie ruchowe
Jakakolwiek zmiana:

(1) stanu pracy urządzenia, instalacji lub sieci,

(2) układu połączeń,

(3) nastaw regulacyjnych,

(4) nastaw sterowniczych.
2. **PRZYŁĄCZANIE I KORZYSTANIE Z SIECI**

2.1. **Charakterystyka sieci**

2.1.1. **Struktura sieci zamkniętej**

2.1.1.1. **Obszar sieci zamkniętej**

Krajowa sieć elektroenergetyczna NN i WN ma decydujący wpływ na bezpieczeństwo pracy sieci elektroenergetycznej i integralność krajowego systemu elektroenergetycznego (dalej „KSE”). Ze względów funkcjonalnych wyróżnia się w niej:

1. sieć zamkniętą obejmującą elementy sieciowe pracujące trwale lub okresowo w układach pierścieniowych (z wyłączeniem jednostronnie zasilanych pierścieni lokalnych 110 kV), która ma zapewnić niezawodną realizację funkcji przesyłowych i dystrybucyjnych w KSE. W sieci zamkniętej przepływy energii elektrycznej przez poszczególne jej elementy zależą od stanu pracy innych elementów tej sieci oraz rozkładu wytwarzania między przyłączone do tej sieci jednostki wytwórcze (Rysunek 2.1.1.1.1 (1));

2. sieć otwartą obejmującą elementy sieciowe 110 kV pracujące trwale w układzie promieniowym lub jednostronnie zasilanych pierścieni lokalnych, która ma realizować wyłącznie funkcje rozdzielcze (Rysunek 2.1.1.1.1 (2)).

![Diagram sieci zamkniętej]

Rysunek 2.1.1.1.1 (1)
Poglądowy schemat sieci zamkniętej
2.1.1.2. Sieć zamknięta dzieli się operacyjnie na:

(1) sieć przesyłową, w której za rozbudowę, eksploatację i prowadzenie ruchu sieciowego odpowiada OSP;

(2) koordynowaną sieć 110 kV, w której za rozbudowę, eksploatację oraz prowadzenie ruchu sieciowego odpowiada wyznaczony OSD, z uwzględnieniem uprawnień decyzyjnych OSP wynikających z ustawy Prawo energetyczne i wydanyc h na jej podstawie aktów wykonawczych.

2.1.1.2. Połączenia międzysystemowe

2.1.1.2.1. KSE połączony jest z systemami elektroenergetycznymi krajów sąsiednich: synchronicznie (połączeniami prądu przemiennego 220 i 400 kV) z systemami czeskim, niemieckim i słowackim oraz asynchronicznie (kablem prądu stałego) z systemem szwedzkim.

2.1.1.2.2. Współpraca międzysystemowa z operatorami systemów połączonych synchronicznie odbywa się na zasadach określonych w ENTSO-E/UCTE Operation Handbook.

2.1.1.2.3. Współpraca międzysystemowa z operatorem szwedzkiego systemu elektroenergetycznego odbywa się na zasadach określonych w umowie dwustronnej.

2.1.1.2.4. Okresowo do KSE mogą być przyłączane, poprzez połączenia prądu przemiennego, wydzielone jednostki wytwórcze z systemów elektroenergetycznych innych krajów sąsiednich pracujących asynchronicznie według zasad ustalonych w umowach dwustronnych.

Rysunek 2.1.1.1 (2)
Poglądowy schemat sieci otwartej
2.1.1.2.5. Połączenia krajowej, koordynowanej sieci 110 kV z zagranicznymi sieciami dystrybucyjnymi mogą być realizowane wyłącznie w układach wydzielonych, poprzez wyodrębnienie jednostek wytwórczych lub obszarów sieci dystrybucyjnej. Współpraca na tych połączeniach odbywa się według zasad uzgodnionych pomiędzy właściwymi operatorami systemu.

2.1.1.2.6. Poprzez połączenia, o których mowa w pkt 2.1.1.2.1 oraz 2.1.1.2.4 - 5, realizuje się wymianę międzysystemową energii elektrycznej, którą dzieli się na:

(1) wymianę równoległą, realizowaną pomiędzy KSE a systemami elektroenergetycznymi pracującymi synchronicznie w Europie kontynentalnej,

(2) wymianę nierównoległą, realizowaną z wykorzystaniem połączeń stołoprzewodowych lub układów wydzielonych.

2.1.1.3. Parametry techniczne sieci i urządzeń

2.1.1.3.1. Podstawowymi elementami sieci zamkniętej są linie napowietrzne i kablowe, transformatory oraz rozdzielniki NN i 110 kV.

2.1.1.3.2. Zakres podstawowych danych charakteryzujących linie napowietrzne i kablowe NN lub 110 kV obejmuje:

(1) kod linii elektroenergetycznej,

(2) kody rozdzielnika, do których przyłączona jest linia elektroenergetyczna,

(3) napięcie znamionowe linii elektroenergetycznej,

(4) długość linii elektroenergetycznej,

(5) rezystancję, reaktancję, konduktancję i susceptancję linii elektroenergetycznej,

(6) obciążalność termiczną linii elektroenergetycznej z uwzględnieniem warunków pogodowych (dotyczy linii napowietrznych),

(7) reaktancję dla składowej symetrycznej zerowej oraz reaktancję dla składowej symetrycznej zgodnej,

(8) nazwę operatora systemu prowadzącego ruch sieciowy linii elektroenergetycznej.

2.1.1.3.3. Zakres podstawowych danych charakteryzujących transformatory NN/NN oraz NN/110 kV obejmuje:

(1) kod transformatora,

(2) kody rozdzielnika, do których przyłączony jest transformator,

(3) moc znamionową transformatora,

(4) napięcia znamionowe uzwojeń transformatora,

(5) rezystancję, reaktancję, konduktancję i susceptancję transformatora,
2.1.1.3.4. Zakres podstawowych danych charakteryzujących rozdzielnie NN i 110 kV obejmuje:

(1) nazwę i kod rozdzielni,
(2) napięcie znamionowe rozdzielni,
(3) układ pracy rozdzielni,
(4) parametry urządzeń będących na wyposażeniu rozdzielni (np. transformatorów, dławików, baterii kondensatorów), niezbędnych do wykonywania obliczeń sieciowych,
(5) moc osiągalną jednostek wytwórczych przyłączonych do rozdzielni lub moc osiągalną jednostek wytwórczych w gałęzi sieci promieniowej przyłączonej do rozdzielni, lub moc przyłączeniową, albo moc umowną odbiorców przyłączonych do rozdzielni,
(6) moc sterowalnych odbiorów mocy przyłączonych do rozdzielni,
(7) zapotrzebowanie na moc czynną i bierną w charakterystycznych godzinach pomiarowych (szczyt i dolina dla lata i zimy),
(8) zapotrzebowanie na moc czynną i bierną na potrzeby własne rozdzielni,
(9) moc urządzeń do kompensacji mocy biernej zainstalowanych w rozdzielni,
(10) moc zwarciową rozdzielni,
(11) nazwę operatora systemu prowadzącego ruch sieciowy rozdzielni.

2.1.1.3.5. Zakres podstawowych danych charakteryzujących jednostki wytwórcze przyłączone do sieci przesyłowej lub sieci dystrybucyjnej 110 kV obejmuje:

(1) nazwę i kod rozdzielni oraz napięcie znamionowe rozdzielni, do której przyłączona jest jednostka wytwórcza,
(2) maksymalną i minimalną moc czynną jednostki wytwórczej,
(3) rezystancję i reaktancję gałęzi, jednostka wytwórcza - transformator blokowy,
(4) maksymalną wartość siły elektromotorycznej E'max podaną na poziomie napięcia rozdzielni, do której przyłączona jest jednostka wytwórcza,
(5) stosunek reaktancji dla składowej symetrycznej zerowej do reaktancji dla składowej symetrycznej zgodnej gałęzi, jednostka wytwórcza - transformator blokowy,
(6) napięcie zwarci transformatora blokowego i moc odniesienia,
(7) moduł przekładni transformatora blokowego w jednostkach względnych i zakres regulacji napięcia pod obciążeniem,
(8) reaktancje: synchroniczną, przejściową i podprzejściową jednostek wytwórczych w osi d i q, w jednostkach względnych,
(9) rezystancję stojana i reaktancję upływu stojana,
(10) mechaniczną stałą czasową turbozespołu,
(11) przejściową i podprzejściową stałą czasową w osi d i q (wyznaczone przy otwartym obwodzie stojana),
(12) krzywą nasycenia,
(13) wykres kołowy generatora,
(14) typy i nastawy układów wzbudzenia oraz stabilizatora systemowego wraz ze schematem blokowym w standardzie IEEE,
(15) typy i nastawy regulatora turbiny,
(16) charakterystykę potrzeb własnych jednostki wytwórczej (moc czynna i bierna) w funkcji obciążenia,
(17) typ jednostki wytwórczej.

2.1.2. **Wymagania dotyczące parametrów jakościowych energii elektrycznej, mocy biernej oraz niezawodności pracy sieci zamkniętej, w tym wskaźniki charakteryzujące jakość i niezawodność dostaw energii elektrycznej w sieci zamkniętej oraz bezpieczeństwo pracy tej sieci**

2.1.2.1. **Częstotliwość**

2.1.2.1.1. Częstotliwość znamionowa w sieci wynosi 50 Hz.

2.1.2.1.2. Jakość częstotliwości w sieci zamkniętej powinna spełniać następujące parametry:

1. wartość średnią częstotliwości, mierzonej przez 10 sekund w miejscach przyłączenia, powinna być zawarta w przedziale:
 1.1) 50 Hz ±1% (od 49,5 Hz do 50,5 Hz) przez 99,5% tygodnia,
 1.2) 50 Hz ±4%/–6% (od 47 Hz do 52 Hz) przez 100% tygodnia;

2. ze względu na pracę systemów połączonych ENTSO-E, zgodnie z ENTSO-E/UCTE Operation Handbook, jakość częstotliwości uzna je się za satysfakcjonującą, jeżeli w okresie miesiąca:
 2.1) odchylenie standardowe dla 90% i 99% przedziałów pomiarowych jest mniejsze niż odpowiednio 40 mHz i 60 mHz,
 2.2) liczba dni pracy z częstotliwością zadaną 49,99 Hz lub 50,01 Hz nie przekracza ośmiu.
2.1.2.2. Napięcie i moc bierna

2.1.2.2.1. Napięcia znamionowe w sieci zamkniętej wynoszą 750, 400, 220 i 110 kV.

2.1.2.2.2. W przypadku sieci funkcjonującej bez zakłóceń, jak i w zakłóceniom stanie jej pracy, w rozdzielniach NN i 110 kV, do których są przyłączeni odbiorcy końcowi pobierający moc nie większą od mocy przyłączeniowej, przy współczynniku tg φ nie większym niż 0,4, w każdym tygodniu 95 % ze zbioru 10-minutowych średnich wartości skutecznych napięcia zasilającego powinno mieścić się w przedziale odchyleń:

(1) ±10 % napięcia znamionowego dla sieci o napięciu znamionowym 110 kV i 220 kV,

(2) +5 % / −10 % napięcia znamionowego dla sieci o napięciu znamionowym 400 kV.

2.1.2.2.3. W rozdzielniach NN i 110 kV innych niż te, o których mowa w pkt 2.1.2.2.2, w przypadku sieci funkcjonującej bez zakłóceń, w każdym tygodniu 95 % ze zbioru 10-minutowych średnich wartości skutecznych napięcia zasilającego powinno mieścić się w przedziałach odchyleń określonych w Tabeli 2.1.2.2.3.

Tabela 2.1.2.2.3

Napięcia w rozdzielniach NN i 110 kV [kV] w przypadku sieci funkcjonującej bez zakłóceń

<table>
<thead>
<tr>
<th>Rodzaj rozdzielni/Sieć</th>
<th>750 kV</th>
<th>400 kV</th>
<th>220 kV</th>
<th>110 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozdzielnie NN i 110 kV, do których przyłączone są bezpośrednio jednostki wytwórcze oraz rozdzielnie zasilane z transformatorów NN/110 kV</td>
<td>-</td>
<td>400÷420</td>
<td>220÷245</td>
<td>110÷121</td>
</tr>
<tr>
<td>Pozostałe rozdzielnie NN i 110 kV</td>
<td>710÷787</td>
<td>380÷420</td>
<td>210÷245</td>
<td>105÷121</td>
</tr>
</tbody>
</table>

2.1.2.2.4. W rozdzielniach NN i 110 kV innych niż te, o których mowa w pkt 2.1.2.2.2, w zakłóceniom stanie pracy sieci, w każdym tygodniu 95 % ze zbioru 10-minutowych średnich wartości skutecznych napięcia zasilającego powinno mieścić się w przedziałach odchyleń określonych w Tabeli 2.1.2.2.4.
Tabela 2.1.2.2.4
Napięcia w rozdzielniach NN i 110 kV [kV] w zaklęceniowym stanie pracy sieci

<table>
<thead>
<tr>
<th>Rodzaj rozdzielni/Sieć</th>
<th>400 kV</th>
<th>220 kV</th>
<th>110 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozdzielnie NN i 110 kV, do których przyłączone są bezpośrednio jednostki wytwórcze oraz rozdzielnie zasilane z transformatorów NN/110 kV</td>
<td>380÷420</td>
<td>210÷245</td>
<td>105÷121</td>
</tr>
<tr>
<td>Pozostałe rozdzielnie NN i 110 kV</td>
<td>360÷420</td>
<td>200÷245</td>
<td>99÷121</td>
</tr>
</tbody>
</table>

2.1.2.2.5. Warunki napięciowe, inne niż określone w pkt 2.1.2.2.2 - 4 określa umowa przesyłania.

2.1.2.2.6. W normalnym stanie pracy sieci (dla sieci funkcjonującej bez zakłóceń) średnie 15-minutowe wartości współczynnika tg φ poboru mocy dla uzgnowionych przez OSP i OSD obszarów sieci dystrybucyjnej powinny zawierać się w przedziale <0,0; 0,4>, przy czym dla wyznaczenia współczynnika przyjmuje się sumę wartości mocy czynnej i sumę wartości mocy biernej pomierzonych na granicy tych obszarów.

Średnie 15-minutowe wartości współczynnika tg φ określa wzór:

\[
tg \varphi_{jk} = \frac{\sum_{i=1}^{N_j} \sum_{m=1}^{N_k} (Q_{T,ik} + Q_{L,ik} + Q_{G,ik} + Q_{B,ik})}{\sum_{i=1}^{N_j} \sum_{m=1}^{N_k} (P_{T,ik} + P_{L,ik} + P_{G,ik})}
\]

j - numer obszaru operatora systemu dystrybucyjnego elektroenergetycznego posiadającego bezpośrednie połączenie z siecią przesyłową (OSDp)

k - k-ty kwadrans doby, przy czym:

k=1 oznacza okres od 00:01 do 00:15;

k=2 oznacza okres od 00:16 do 00:30;

…

k=96 oznacza okres od 23:46 do 24:00,

\[
Q_{T,ik} - \text{średnia wartość mocy biernej zmierzona po dolnej stronie i-tego autotransformatora/transformatora NN/110 kV dla k-tego przedziału 15-minutowego [MVar]},
\]

\[
Q_{L,ik} - \text{średnia wartość mocy biernej przesyłana l-tą linią międzyobszarową dla k-tego przedziału 15-minutowego zmierzona w rozdzielni należącej do j-tego obszaru [MVar]. W przypadku linii kablowych będących w całości własnością danego OSDp, należy użyć pomiaru mocy z drugiego końca tych linii},
\]

\[
Q_{G,ik} - \text{średnia wartość mocy biernej zmierzona po górnej stronie transformatora blokowego m-tego generatora dla k-tego przedziału 15-minutowego [MVar]},
\]

\[
Q_{B,ik} - \text{średnia wartość mocy n-tego źródła mocy biernej, załączonego w rozdzielni 110 kV dla k-tego przedziału 15-minutowego [MVar]},
\]
średnia wartość mocy czynnej zmierzona po dolnej stronie i-tęgo autotransformatora/transformatora NN/110 kV dla k-tego przedziału 15-minutowego [MW],

średnia wartość mocy czynnej przesyłana l-tą linią międzyobszarową dla k-tego przedziału 15-minutowego zmierzona w rozdzielni należącej do j-tego obszaru [MW]. W przypadku linii kablowych będących w całości własnością danego OSDp, należy użyć pomiaru mocy z drugiego końca tych linii,

średnia wartość mocy czynnej zmierzonej po górnej stronie transformatora blokowego m-tego generatora dla k-tego przedziału 15-minutowego [MW],

liczba autotransformatorów/transformatorów NN/110 kV w j-tym obszarze,

liczba linii międzyobszarowych 110 kV j-tego obszaru, do których zaliczają się linie wymiany z:
- innymi obszarami danego OSDp,
- innymi OSDp,
- operatorem systemu przesyłowego elektroenergetycznego (OSP),
- operatorami sąsiednich (zagranicznych) systemów przesyłowych,
- wytwórcami lokalnymi działającymi na terenie sąsiednich obszarów, przyłączonymi do sieci o napięciu 110 kV,

liczba jednostek wytwórczych przyłączonych do rozdzielni 110 kV w j-tym obszarze.

liczba źródeł mocy biernej będących własnością OSP, zainstalowanych w rozdzielniach 110 kV w j-tym obszarze.

Przyjmuje się, że moc czynna (bierna) wpływająca do węzła sieci ma znak dodatni, a moc wypływająca z węzła ma znak ujemny.

2.1.2.2.7. Obszary, dla których jest wyznaczany współczynnik tgφ są określone w umowie przesyłania zawartej z OSD.

Jeżeli strony umowy przesyłania nie uzgodnią ww. obszarów, przyjmuje się następujące obszary wyznaczania współczynnika tgφ:

(1) na terenie ENERGA - Operator S.A. - 8 obszarów obejmujących: Oddział w Gdańsku, Oddział w Toruniu, Oddział w Olsztynie, Oddział w Słupsku, Oddział w Koszalinie, Oddział w Płocku, Oddział w Kaliszu, Oddział w Elblągu;

(2) na terenie ENEA Operator Sp. z o.o. - 5 obszarów obejmujących: Oddział Dystrybucji Szczecin, Oddział Dystrybucji Gorzów Wlkp., Oddział Dystrybucji Zielona Góra, Oddział Dystrybucji Poznań, Oddział Dystrybucji Bydgoszcz;

(3) na terenie TAURON Dystrybucja S.A. - 10 obszarów obejmujących: Oddział we Wrocławiu, Oddział w Wałbrzychu, Oddział w Legnicy, Oddział w Jeleniej Górze, Oddział w Opolu, Oddział w Częstochowie, Oddział w Będzinie, Oddział w Krakowie, Oddział w Bielsku - Białej, Oddział w Tarnowie;

(4) na terenie PGE Dystrybucja S.A. - 8 obszarów obejmujących: Oddział Lublin, Oddział Białystok, Oddział Łódź - Miasto, Oddział Łódź - Teren, Oddział Rzeszów, Oddział Warszawa, Oddział Zamość, Oddział Skarżysko - Kamienna;

(5) na terenie Vattenfall Distribution S.A. - 1 obszar;
(6) na terenie RWE Stoen Operator Sp. z o.o. - 1 obszar;
(7) na terenie Energoserwis Kleszczów Sp. z o.o. - 1 obszar.

W przypadku zmiany firmy pod jaką prowadzi działalność dany OSD lub ww. obszarów działalności, OSD jest zobowiązany do pisemnego poinformowania OSP o dokonanej zmianie na adres:
PSE S.A.
Departament Usług Operatorskich
ul. Warszawska 165
05 - 520 Konstancin - Jeziorna

2.1.2.2.8. Zmiana obszarów, dla których jest wyznaczany współczynnik tg φ nie może być dokonywana częściej niż raz na rok. Zmiana powinna być dokonana w formie aneksu do umowy przesyłania, nie później niż do końca listopada roku poprzedzającego.

2.1.2.2.9. OSD zobowiązany jest do monitorowania na bieżąco współczynnika tg φ dla uzgodnionych obszarów wyznaczonych zgodnie z pkt 2.1.2.2.7.

2.1.2.2.10. Wyznaczone dla uzgodnionych obszarów wartości tg φ dla charakterystycznych godzin dób pomiarowych przekazywane są do OSP wraz z pozostałymi danymi, w trybie przewidzianym dla przekazywania tych danych.

2.1.2.2.11. W uzasadnionych przypadkach, na pisemne wystąpienie OSP, OSD w ciągu 10 dni roboczych od daty otrzymania tego wystąpienia, zobowiązany jest dostarczyć dane pomiarowe za okres ostatnich 12 miesięcy, niezbędne do wyznaczenia współczynnika tg φ poszczególnych obszarów dla wskazanych przedziałów czasowych.

2.1.2.2.12. Warunkiem dotrzymania przez OSP parametrów napięcia w miejscach dostarczania energii elektrycznej z sieci przesyłowej jest prowadzenie przez OSD kompensacji mocy biernej w sieci dystrybucyjnej, w zakresie niezbędnym do dotrzymania współczynnika tg φ na poziomie określonym w pkt 2.1.2.2.6.

2.1.2.3. Niezawodność pracy

2.1.2.3.1. Zakłada się, że układ pracy sieci zamkniętej, aktualny lub planowany (dotyczy planowania krótko i średnioterminowego - do 3 lat) spełnia warunki niezawodności, a więc także bezpieczeństwa, gdy spełnione są warunki określone w pkt 2.1.2.3.2 - 9.

2.1.2.3.2. Obciążenia prądowe poszczególnych elementów sieci są niższe od dopuszczalnych długotrwałej.

2.1.2.3.3. Napięcia w poszczególnych węzłach sieci mieszczą się w granicach dopuszczalnych, zgodnie z pkt 2.1.2.2.2 - 3.

2.1.2.3.4. Moc (prądy) zwarcie w poszczególnych rozdzielniach nie przekraczają mocy (prądów) wyłączalnych zainstalowanych wyłącników.

2.1.2.3.5. Zapas stabilności napięciowej jest nie mniejszy niż 10%.
2.1.2.3.6. Awaryjne wyłączenie w danym układzie sieci zamkniętej dowolnego, pojedynczego jej elementu, w tym w szczególności jednostki wytwórczej, transformatora, linii jednotorowej, jednego toru linii dwutorowej, sekcji szyn lub systemu szyn (gdy jest niesekcjionowany) nie spowoduje:

(1) pozbawienia odbiorców zasilania, z wyjątkiem odbiorców zasilanych bezpośrednio z wyłączonego elementu;
(2) zwiększenia obciążenia prądowego żadnego z elementów sieciowych powyżej wartości dopuszczalnej długotrwale (w przypadku elementów, których nie można przeciągać) lub wartości dopuszczalnej okresowo (w przypadku elementów, dla których dopuszcza się możliwość przeciągania przez określony czas), przy czym:

(2.1) układ pracy sieci zamkniętej (aktualny lub planowany), w którym wyłączenie pojedynczego elementu może prowadzić do przeciążeń dopuszczalnych okresowo, jest dopuszczalny jedynie wtedy, gdy możliwe jest odcięwanie tego elementu w zadany czasie bez wprowadzania ograniczeń zasilania odbiorców, na przykład poprzez ręczne lub automatyczne przełączenia w sieci, ręczne lub automatyczne odstawienie lub wyłączenie jednostki wytwórczej, ręczne lub automatyczne zanikanie lub zawyżanie generacji jednostek wytwórczych, itp.;

(2.2) możliwość okresowego przeciągania elementów sieci zamkniętej, wartość dopuszczalnego przeciążenia, czas jego trwania oraz ewentualne warunki dodatkowe są określone indywidualnie dla poszczególnych elementów sieci przez służby eksploatacyjne OSP i OSD;

(3) wykroczenia napięć poza zakres napięć dopuszczalnych dla stanów zakłóconych, określonych w pkt 2.1.2.2.4;

(4) obniżenia zapasu stabilności napięciowej poniżej 5%;

(5) pojawienia się nietłumionych kołysań mocy jednostek wytwórczych prowadzących do utraty ich stabilności kątowej.

2.1.2.3.7. Awaryjne wyłączenie dwóch linii, równoczesne lub sekwencyjne, nie spowoduje załamania pracy części sieci zamkniętej o sumarycznym zapotrzebowaniu większym niż 200 MW.

2.1.2.3.8. Awaryjne wyłączenie w obszarze deficytowym (obszar, w którym moc pobierana jest większa od mocy wytwarzanej):

(1) największej jednostki wytwórczej pracującej w tym obszarze i pojedynczej linii zasilającej ten obszar, lub

(2) największej jednostki wytwórczej pracującej w tym obszarze i transformatora zasilającego ten obszar, nie spowoduje pozbawienia odbiorców zasilania.
2.1.2.3.9. Żadne spośród potencjalnie możliwych zwarć w danym układzie pracy sieci zamkniętej, w szczególności zwarć trójfazowych, zlikwidowane po czasie krótszym lub równym 150 ms, nie spowoduje powstania kołysań mocy jednostek wytwórczych prowadzących do utraty ich stabilności kątowej.

2.1.2.3.10. Do pozostałych wskaźników charakteryzujących jakość i niezawodność dostaw energii elektrycznej w sieci zamkniętej oraz bezpieczeństwo pracy tej sieci, innych niż zawarte w pkt 2.1.2, zalicza się:

(1) poziom oraz dostępność rezerw mocy i pozostałych regulacyjnych usług systemowych - wymagane przez OSP zgodnie z postanowieniami pkt 4.3.4.18 - 19, 4.3.9 niniejszej części IRiESP oraz pkt 2.1.9 - 11 i 2.2.2 - 3 IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi;

(2) margines bezpieczeństwa przesyłu – wymagany przez OSP zgodnie z postanowieniami Załącznika nr 3 do IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi;

(3) wskaźniki charakteryzujące dotrzymywanie przez konwencjonalne jednostki wytwórcze oraz farmy wiatrowe warunków pracy w zależności od częstości i napięcia zasilającego – wymagane przez OSP zgodnie z postanowieniami pkt 2.2.3.3.1.22 - 27 i 2.2.3.3.3.4;

(4) warunki pracy jednostek wytwórczych – wymagane przez OSP zgodnie z postanowieniami pkt 2.2.3.3.1.32 - 35;

(5) wskaźniki charakteryzujące dotrzymywanie przez farmy wiatrowe standardów jakościowych energii elektrycznej (zmiany i skoki napięcia, wahania napięcia, zawartość harmonicznych napięcia, współczynnik odkształcenia napięcia THD, współczynnik zakłóceń harmonicznych telefonii THFF) - wymagane przez OSP zgodnie z postanowieniami pkt 2.2.3.3.3.8;

(6) wskaźniki wynikające z postanowień rozporządzenia Ministra Gospodarki z dnia 4 maja 2007 r. w sprawie szczegółowych warunków funkcjonowania systemu elektroenergetycznego (Dz. U. z 2007 r. Nr 93, poz. 623 z późn. zm.), a w szczególności:

(6.1) wskaźnik długookresowego migotania światła (Pb);

(6.2) zawartość składowej symetrycznej kolejności przeciwej napięcia zasilającego oraz harmonicznych napięcia zasilającego;

(6.3) współczynnik odkształcenia wyższymi harmonicznymi napięcia zasilającego THD;

(6.4) czas trwania jednorazowej przerwy planowanej i nieplanowanej w dostarczaniu energii elektrycznej oraz dopuszczalny łączny czas trwania w ciągu roku kalendarzowego wyłączeń planowanych i nieplanowanych;

(6.5) wskaźniki dotyczące czasu trwania przerw w dostarczaniu energii elektrycznej, wyznaczone dla poprzedniego roku kalendarzowego.
2.1.3. **Modele sieci zamkniętej**

2.1.3.1. **Struktura modelu**

2.1.3.1.1. Modele matematyczne sieci zamkniętej tworzy się w celu wykonywania analiz systemowych pozwalających na określenie warunków pracy sieci w różnych stanach jej pracy. Wyniki analiz systemowych są istotnym elementem decyzyjnym w procesie planowania krótkookresowego, średniookresowego i długoterminowego.

2.1.3.1.2. W modelu matematycznym sieci zamkniętej odwzorowane są następujące elementy:

1. wszystkie linie elektroenergetyczne, transformatory i rozdzielnie wchodzące w skład sieci zamkniętej,
2. sieci sąsiednich systemów elektroenergetycznych w zakresie niezbędnym dla poprawności obliczeń,
3. jednostki wytwórcze przyłączone do sieci zamkniętej,
4. inne niż jednostki wytwórcze źródła mocy biernej,
5. odbiory mocy biernej przyłączone do sieci zamkniętej.

2.1.3.1.3. Model sieci zamkniętej zawiera następujące dane:

1. parametry elektryczne linii elektroenergetycznych (rezystancję, reaktancję, susceptancję, dopuszczalną obciążalność) wchodzących w skład sieci zamkniętej,
2. parametry elektryczne i regulacyjne transformatorów wchodzących w skład sieci zamkniętej,
3. założony poziom mocy czynnej w poszczególnych rozdzielniach NN i 110 kV, do których przyłączone są bezpośrednio jednostki wytwórcze,
4. parametry techniczne jednostek wytwórczych przyłączonych do sieci zamkniętej,
5. topologię sieci w układzie węzłowym,
6. całkowite zapotrzebowanie na moc z rozbiciem na poszczególne rozdzielnie NN i 110 kV, do których przyłączeni są odbiorcy końcowi lub sieci promieniowe.

2.1.3.1.4. OSP aktualizuje model matematyczny sieci zamkniętej w możliwie najpełniejszym zakresie, w przypadku zmiany stanu pracy sieci zamkniętej, którego dotyczy analiza.

2.1.3.1.5. OSP wykonuje następujące analizy systemowe:

1. obliczenia rozpływów mocy w sieci zamkniętej,
2. obliczenia parametrów zwarcioowych sieci zamkniętej,
2.1.3.2. Podstawowe modele sieci zamkniętej

2.1.3.2.1. OSP tworzy podstawowe modele matematyczne sieci zamkniętej dla normalnych stanów pracy tej sieci.

2.1.3.2.2. Podstawowe modele matematyczne sieci zamkniętej tworzone są dla poniższych charakterystycznych okresów czasu w ciągu roku kalendarzowego:

(1) szczyt ranny i wieczorny oraz dolina nocna w sezonie zimowym,
(2) szczyt ranny oraz dolina nocna w sezonie letnim.

2.1.3.2.3. Podstawowe modele matematyczne sieci zamkniętej OSP udostępnia innym operatorom systemu.

2.2. Przyłączanie do sieci

2.2.1. Przyłączanie do sieci urządzeń wytwórczych, sieci dystrybucyjnych, urządzeń odbiorców końcowych, połączeń międzysystemowych oraz linii bezpośrednich

2.2.1.1. Zasady przyłączania do sieci przesyłowej OSP

2.2.1.1.1. Przyłączenie do sieci, to fizyczne połączenie z siemią przesyłową urządzeń, instalacji lub sieci podmiotu ubiegającego się o przyłączenie (dalej również „wnioskodawca”).

2.2.1.1.2. Przyłączenie do sieci umożliwia podmiotom korzystanie z usług przesyłania energii elektrycznej świadczonych przez OSP (dalej „usługi przesyłania”).

2.2.1.1.3. W celu maksymalnego wykorzystania istniejącej infrastruktury technicznej sieci przyjmuje się jako podstawową zasadę przyłączanie urządzeń, instalacji lub sieci wnioskodawców w pierwszej kolejności do istniejących rozdzielni elektroenergetycznych.

2.2.1.1.4. Przyłączanie do sieci przesyłowej linii bezpośrednich oraz połączenia międzysystemowe wymagają, poza umową o przyłączenie, podpisania z OSP odrębnej umowy, ustalającej zasady współpracy z OSP operatorów prowadzących ruch tych linii lub połączeń.

2.2.1.1.5. Podmiot ubiegający się o przyłączenie urządzeń, instalacji lub sieci do sieci przesyłowej składa do OSP wniosek o określenie warunków przyłączenia do sieci przesyłowej (zwanych dalej „warunkami przyłączenia”).
2.2.1.6. Przyłączenie urządzeń, instalacji lub sieci wnioskodawcy do sieci przesyłowej następuje na podstawie umowy o przyłączenie, po spełnieniu przez wnioskodawcę warunków przyłączenia określonych przez OSP oraz warunków określonych ustawą Prawo energetyczne.

2.2.1.7. Przyłączenie urządzeń, instalacji lub sieci podmiotów do sieci przesyłowej obejmuje następujące etapy:

1. złożenie wniosku o określenie warunków przyłączenia przez podmiot ubiegający się o przyłączenie,
2. wniesienie, w przypadku podmiotów ubiegających się o przyłączenie źródła do sieci, w terminie siedmiu dni od dnia złożenia wniosku o określenie warunków przyłączenia, zaliczki na poczet opłaty za przyłączenie,
3. określenie warunków przyłączenia przez OSP,
4. zawarcie umowy o przyłączenie do sieci przesyłowej,
5. przygotowanie i realizacja budowy przyłącza oraz przyłączanych urządzeń, instalacji lub sieci,
6. odbiór przyłącza i przyłączanych urządzeń, instalacji lub sieci,
7. dokonanie przyłączenia urządzeń, instalacji lub sieci do sieci przesyłowej.

2.2.1.2. Określanie warunków przyłączenia

2.2.1.2.1. Wnioski o określenie warunków przyłączenia

2.2.1.2.1.1. Podmiot ubiegający się o przyłączenie do sieci przesyłowej składa wniosek o określenie warunków przyłączenia według wzoru określonego przez OSP.

2.2.1.2.1.2. Wzory wniosków o określenie warunków przyłączenia OSP publikuje na swojej stronie internetowej.

2.2.1.2.1.3. Wniosek o określenie warunków przyłączenia powinien zawierać:

1. oznaczenie wnioskodawcy,
2. określenie mocy przyłączeniowej dla każdego miejsca dostarczania energii elektrycznej,
3. przewidywane roczne zużycie energii elektrycznej,
4. przewidywany termin rozpoczęcia dostarczania energii elektrycznej lub jej poboru,
5. parametry techniczne, charakterystykę ruchową i eksploatacyjną przyłączanych urządzeń, instalacji lub sieci,
6. określenie minimalnej mocy wymaganej dla zapewnienia bezpieczeństwa osób i mienia w przypadku wprowadzenia ograniczeń w dostarczaniu i poborze energii elektrycznej,
informacje techniczne dotyczące wprowadzanych zakłóceń przez urządzenia wnioskodawcy oraz charakterystykę obciążen, niezbędne do określania warunków przyłączenia.

2.2.1.2.1.4. Wniosek o określenie warunków przyłączenia urządzeń, instalacji lub sieci wytwórców, oprócz danych i informacji wymienionych w pkt 2.2.1.2.1.3, powinien określać:

(1) liczbę przyłączanych jednostek wytwórczych, moc dyspozycyjną, osiągalną, zainstalowaną i pozorną jednostek wytwórczych, zakres dopuszczalnych zmian obciążen jednostek wytwórczych lub ich grup, maksymalną roczną ilość wytwarzania energii elektrycznej i ilość tej energii dostarczonej do sieci,

(2) wielkości planowanego zapotrzebowania na moc i energię elektryczną w celu pokrycia potrzeb ogólnych elektrowni i potrzeb własnych jednostek wytwórczych,

(3) stopień skompensowania mocy biernej związanej z odbiorem energii elektrycznej czynnej na potrzeby ogólne elektrowni i potrzeby własne jednostek wytwórczych oraz związanej z wprowadzaniem wyprodukowanej energii elektrycznej do sieci.

2.2.1.2.1.5. Wniosek o określenie warunków przyłączenia farmy wiatrowej w zakresie charakterystyki ruchowej i eksploatacyjnej, o której mowa w pkt 2.2.1.2.1.3 (5), powinien zawierać:

(1) specyfikację techniczną turbin wiatrowych,

(2) sporządzony w języku polskim wyciąg ze sprawozdania z badań jakości energii elektrycznej dostarczanej przez turbiny wiatrowe, według najnowszej obowiązującej na dzień składania wniosku normy,

(3) charakterystykę mocy turbiny wiatrowej w funkcji prędkości wiatru (według producenta),

(4) charakterystykę dostępnej mocy biernej w funkcji mocy czynnej turbiny wiatrowej.

2.2.1.2.1.6. Wniosek o określenie warunków przyłączenia może zawierać także wymagania dotyczące odmiennych od standardowych parametrów technicznych energii elektrycznej lub parametrów jej dostarczania, w tym wymagania dotyczące:

(1) dopuszczalnej zawartości interharmonicznych i wyższych harmonicznych,

(2) dopuszczalnej asymetrii napięć,

(3) dopuszczalnych odchyleń i wahań napięcia w miejscu dostarczania energii elektrycznej,

(4) dopuszczalnego czasu trwania przerwy w dostarczaniu energii elektrycznej.
2.2.1.2.1.7. Do wniosku o określenie warunków przyłączenia należy dołączyć:

1) zestawienie określające nieruchomości (obiekty lub lokale), na których planowana jest budowa przyłączanych do sieci przesyłowej urządzeń, instalacji lub sieci,

2) odpis pełny z rejestru przedsiębiorców Krajowego Rejestru Sądowego lub zaświadczenie o wpisie do ewidencji działalności gospodarczej, a w przypadku wnioskodawcy nieposiadającego siedziby na terytorium Rzeczypospolitej Polskiej aktualny odpis z właściwego rejestru przedsiębiorców uzyskany na zasadach określonych w przepisach kraju siedziby wnioskodawcy. W przypadku wnioskodawcy nieposiadającego siedziby na terytorium Rzeczypospolitej Polskiej ww. dokumenty wnioskodawca dostarcza wraz z tłumaczeniem na język polski,

3) w przypadku wnioskodawców działających za pośrednictwem pełnomocników, pełnomocnictwa określające zakres umocowania pełnomocników.

2.2.1.2.1.8. Do wniosku o określenie warunków przyłączenia podmiot ubiegający się o przyłączenie źródła do sieci OSP, oprócz dokumentów wymienionych w pkt 2.2.1.2.1.7 dołącza wypis i wyrys z miejscowego planu zagospodarowania przestrzennego albo, w przypadku braku takiego planu, decyzję o warunkach zabudowy i zagospodarowania terenu dla nieruchomości określonej we wniosku, jeżeli jest ona wymagana na podstawie przepisów o planowaniu i zagospodarowaniu przestrzennym. Wypis i wyrys z miejscowego planu zagospodarowania przestrzennego lub decyzja o warunkach zabudowy i zagospodarowania terenu powinny potwierdzić dopuszczalność lokalizacji danego źródła energii na terenie objętym planowaną inwestycją, która jest objęta wnioskiem o określenie warunków przyłączenia.

2.2.1.2.1.9. Dokumenty dołączone do wniosku o określenie warunków przyłączenia powinny być dostarczone w oryginale lub w formie kopii potwierdzonej zgodnie z oryginałem przez osoby upoważnione do działania w imieniu wnioskodawcy lub przez notariusza.

2.2.1.2.1.10. Dokumenty wymienione w pkt 2.2.1.2.1.7 (2) i 2.2.1.2.1.8, z wyłączeniem decyzji o warunkach zabudowy i zagospodarowania terenu, powinny być wydane nie wcześniej niż trzy miesiące przed datą złożenia wniosku o określenie warunków przyłączenia.

2.2.1.2.1.11. Podmiot ubiegający się o przyłączenie źródła do sieci OSP wnosi, zgodnie z pkt 2.2.1.2.1.7 (4), zaliczkę na poczet opłaty za przyłączenie do sieci (dalej „zaliczka”), w wysokości 30 zł (brutto) za każdy kilowat mocy przyłączeniowej wskazanej we wniosku o określenie warunków przyłączenia, nie wyższej jednak niż 3 000 000 zł (brutto) i nie wyższej niż wysokość przewidywanej opłaty za przyłączenie do sieci.

2.2.2. Warunki przyłączenia i procedura ich określania

2.2.1.2.2.1. W celu określenia warunków przyłączenia do sieci przesyłowej realizowane są następujące działania:
(1) wnioskodawca składa do OSP wniosek o określenie warunków przyłączenia;
(2) OSP dokonuje weryfikacji wniosku w terminie 14 dni roboczych od daty jego otrzymania. W przypadku otrzymania wniosku niespełniającego wymagań określonych w pkt 2.2.1.2.1, OSP wzywa wnioskodawcę do jego uzupełnienia;
(3) OSP potwierdza pisemnie złożenie przez wnioskodawcę wniosku o określenie warunków przyłączenia, spełniającego wymagania, o których mowa w pkt 2.2.1.2.1. W przypadku przyłączenia źródła, wysokość przewidywanej opłaty za przyłączenie. Data złożenia wniosku jest data otrzymania przez OSP kompletnego wniosku spełniającego wymagan, o których mowa w pkt 2.2.1.2.1. Potwierdzenie pisemne OSP przysyła faksem oraz pocztą na numer i adres wnioskodawcy wskazany we wniosku o określenie warunków przyłączenia;
(4) w terminie 14 dni od daty złożenia wniosku, wnioskodawca wnosi zaliczkę, o której mowa w pkt 2.2.1.2.1.11, w wysokości przewidywanej opłaty za przyłączenie, na rachunek bankowy OSP wskazany we wzorze wniosku o określenie warunków przyłączenia, pod rygorem pozostawienia wniosku bez rozpatrzenia. Datą wniesienia zaliczki jest dzień uznania rachunku bankowego OSP;
(5) wnioskodawca w dniu dokonania przelewu zaliczki lub w dniu następującym po tej dacie przesyła OSP, potwierdzony przez bank dowód dokonania przelewu zaliczki faksem na numer wskazany we wzorze wniosku o określenie warunków przyłączenia lub dostarcza ten dowód do siedziby OSP;
(6) OSP w terminie 7 dni od daty otrzymania zaliczki wystawia fakturę VAT;
(7) podstawą do określenia przez OSP warunków przyłączenia są wyniki ekspertyzy wpływu przyłączanych urządzeń, instalacji lub sieci na system elektroenergetyczny. Wykonanie ekspertyzy zapewnia OSP. Kryteria oceny ekspertyzy określa pkt 3.4;
(8) OSP wydaje warunki przyłączenia w terminie 150 dni od dnia złożenia wniosku o określenie warunków przyłączenia, a w przypadku przyłączania źródła - od dnia wniesienia zaliczki. Dniem wydania warunków przyłączenia przez OSP jest dzień doręczenia warunków przyłączenia wnioskodawcy.

2.2.1.2.2.2. Warunki przyłączenia są ważne przez dwa lata od dnia ich doręczenia. W okresie ważności warunki przyłączenia stanowią warunkowe zobowiązanie OSP do zawarcia umowy o przyłączenie do sieci przesyłowej.

2.2.1.2.2.3. Zasady ustalania opłaty za przyłączenie do sieci przesyłowej określa Taryfa OSP.

2.2.1.2.2.4. Koszty wykonania ekspertyzy, o której mowa w pkt 2.2.1.2.2.1 (7), uwzględnia się w opłacie za przyłączenie.
2.2.1.2.2.5. W przypadku gdy:

(1) OSP odmówi wydania warunków przyłączenia lub zawarcia umowy o przyłączenie do sieci elektroenergetycznej z podmiotem ubiegającym się o przyłączenie z powodu braku technicznych lub ekonomicznych warunków przyłączenia, jest obowiązany niezwłocznie zwrócić pobraną zaliczkę,

(2) OSP wyda warunki przyłączenia po terminie, o którym mowa w pkt 2.2.1.2.2.1 (8), jest obowiązany do wypłaty odsetek od wniesionej zaliczki liczonych za każdy dzień zwłoki w wydaniu tych warunków;

(3) OSP wyda warunki przyłączenia, które będą przedmiotem sporu między OSP a podmiotem ubiegającym się o ich wydanie i spor zostanie rozstrzygnięty na korzyść tego podmiotu, jest obowiązany zwrócić pobraną zaliczkę wraz z odsetkami liczonymi od dnia wniesienia zaliczki do dnia jej zwrotu, o ile nie nastąpi przyłączenie.

2.2.1.2.2.6. OSP dokona zwrotu zaliczki, w przypadkach o których mowa w pkt 2.2.1.2.2.5 lub zwrotu różnicy, o której mowa w pkt 2.2.1.2.2.9, na podstawie wystawionej faktury VAT korekta, w terminie 7 dni od daty wystawienia faktury VAT korekta.

2.2.1.2.2.7. Stopę odsetek, o których mowa w pkt 2.2.1.2.2.5 (2)- (3), przyjmuje się w wysokości równej rentowności pięcioletnich obligacji skarbowych emitowanych na najbliższy dzień poprzedzający dzień 30 czerwca roku, w którym złożono wniosek o określenie warunków przyłączenia, według danych opublikowanych przez ministra właściwego do spraw finansów publicznych oraz Główny Urząd Statystyczny.

2.2.1.2.2.8. OSP zapłaci odsetki, o których mowa w pkt 2.2.1.2.2.5 (2) - (3) lub 2.2.1.2.2.9, na podstawie noty odsetkowej wystawionej przez podmiot, któremu zostały wydane warunki przyłączenia, w terminie 14 dni od daty jej otrzymania.

2.2.1.2.2.9. W przypadku, gdy wysokość zaliczki przekroczy wysokość opłaty za przyłączenie do sieci, różnica między wysokością wniesionej zaliczki a wysokością tej opłaty podlega zwrotowi wraz z ustawowymi odsetkami liczonymi od dnia wniesienia zaliczki. OSP dokona ich zwrotu w sposób określony odpowiednio w pkt 2.2.1.2.2.6 i 2.2.1.2.2.8.

2.2.1.2.2.10. Wraz z określonymi przez OSP warunkami przyłączenia wnioskodawca otrzymuje projekt umowy o przyłączenie.

2.2.1.2.2.11. Warunki przyłączenia do sieci określają w szczególności:

(1) nieruchomości (obiekty lub lokale), do których energia elektryczna ma być dostarczana lub z których energia elektryczna ma być odbierana,

(2) miejsce przyłączenia, rozumiane jako punkt w sieci, w którym przyłącze łączy się z siecią,

(3) miejsce dostarczania energii elektrycznej,

(4) moc przyłączeniową,
(5) rodzaj przyłącza,
(6) zakres niezbędnych zmian w sieci związanych z przyłączaniem,
(7) dane znamionowe urządzeń, instalacji i sieci oraz dopuszczalne, graniczne parametry ich pracy a także dopuszczalny poziom zmiennosci parametrów technicznych energii elektrycznej,
(8) miejsce zainstalowania układu pomiarowo - rozliczeniowego,
(9) wymagania dotyczące układu pomiarowo - rozliczeniowego i systemu pomiarowo - rozliczeniowego,
(10) rodzaj i usytuowanie zabezpieczenia głównego, dane znamionowe oraz inne niezbędne wymagania w zakresie elektroenergetycznej automatyki zabezpieczeniowej i systemowej,
(11) dane umożliwiające określenie wartości prądów zwarcia wielofazowych w miejscu przyłączenia i czasy ich wyłączeń,
(12) dane umożliwiające określenie wartości prądu zwarcia doziemnego w miejscu przyłączenia i czasów ich wyłączeń lub trwania,
(13) wymagany stopień skompensowania mocy biernej,
(14) wymagania w zakresie dostosowania przyłączonych urządzeń, instalacji lub sieci do systemów sterowania dyspozytorskiego,
(15) wymagania w zakresie przystosowania układu pomiarowo - rozliczeniowego do systemów zdalnego odczytu danych pomiarowych,
(16) wymagania w zakresie zabezpieczenia sieci przed zakłóceniami elektrycznymi powodowanymi przez urządzenia, instalacje lub sieci przyłączanego podmiotu,
(17) wymagania w zakresie wyposażenia urządzeń, instalacji lub sieci, niezbędne do współpracy z siecią, do której ma nastąpić przyłączenie,
(18) możliwości dostarczania energii elektrycznej w warunkach odmiennych od standardów określonych w IRiESP, w tym w szczególności energii elektrycznej o indywidualnie określonych, następujących parametrach: zawartości wyższych harmonicznych, asymetrii napięć oraz odchyleniach i wahaniach napięcia,
(19) dane i informacje dotyczące sieci, niezbędne w celu doboru systemu ochrony przed porażeniami w instalacji lub sieci podmiotu, którego instalacje lub sieci będą przyłączone.

2.2.1.2.2.12. OSP określając warunki przyłączenia nie weryfikuje, czy nieruchomości (obiekty lub lokale) określone we wniosku o wydanie warunków przyłączenia, zostały określone również we wnioskach składanych przez innych wnioskodawców.

2.2.1.2.3. **Zmiana warunków przyłączenia**

2.2.1.2.3.1. Określenia nowych warunków przyłączenia do sieci zamkniętej wymaga każdorazowo:
(1) zwiększenie przez podmiot przyłączony do sieci przesyłowej zapotrzebowania na moc przyłączeniową,

(2) zmiana dotychczasowych warunków i parametrów technicznych pracy urządzeń, instalacji i sieci przyłączonego podmiotu.

2.2.1.2.3.2. W przypadkach, o których mowa w pkt 2.2.1.2.3.1 (1) - (2), podmiot zobowiązany jest do wystąpienia do OSP z wnioskiem o określenie nowych warunków przyłączenia, zgodnie z procedurą określoną w pkt 2.2.

2.2.1.2.3.3. OSP informuje użytkowników systemu przyłączonych do sieci przesyłowej, z najmniej trzyletnim wyprzedzeniem, o konieczności dostosowania przez tych użytkowników urządzeń i instalacji do zmienionego napięcia znamionowego, podwyższonego poziomu prądów zwarcia lub zmianie innych warunków funkcjonowania sieci przesyłowej.

Wraz z tą informacją użytkownik systemu otrzymuje również określone przez OSP warunki dostosowania jego urządzeń i instalacji do nowych warunków, w tym obowiązki OSP i obowiązki użytkownika systemu.

2.2.1.3. Umowa o przyłączenie do sieci przesyłowej

2.2.1.3.1. W okresie ważności warunków przyłączenia, OSP jest zobowiązany do zawarcia umowy o przyłączenie do sieci przesyłowej z podmiotem ubiegającym się o przyłączenie, na zasadzie równoprawnego traktowania, jeżeli istnieją techniczne i ekonomiczne warunki przyłączenia, a podmiot ubiegający się o zawarcie powyższej umowy posiada tytuł prawny do korzystania z nieruchomości, obiektu lub lokalu, określonych we wniosku o określenie warunków przyłączenia, do których ma być dostarczana energia elektryczna. Tytuły prawne wraz z odpisami z ksiąg wieczystych, a w przypadku gdy nieruchomość nie ma urządzonej księgi wieczystej, wraz z odpowiednim odpisem innego dokumentu urzędowego, powinny być przedłożone OSP w oryginale lub w formie kopii poświadczenych za zgodność z oryginałem przez osoby upoważnione do reprezentowania wnioskodawcy lub przez notariusza.

2.2.1.3.2. Umowa o przyłączenie do sieci przesyłowej stanowi podstawę do rozpoczęcia realizacji prac projektowych i budowlano-montażowych na zasadach określonych w tej umowie.

2.2.1.3.3. Umowa o przyłączenie do sieci przesyłowej określa w szczególności:

(1) strony zawierające umowę,

(2) przedmiot umowy wynikający z warunków przyłączenia,

(3) podstawowe zobowiązania stron,

(4) harmonogram realizacji przyłączenia,

(5) techniczne warunki realizacji umowy,

(6) moc przyłączeniową,

(7) zakres robót niezbędnych przy realizacji przyłączenia,
(8) wymagania dotyczące lokalizacji układu pomiarowo - rozliczeniowego i jego parametrów,
(9) miejsce rozgraniczenia własności sieci przesyłowej OSP i urządzeń, instalacji lub sieci podmiotu przyłączanego,
(10) wysokość przewidywanej opłaty za przyłączenie, zasady dokonywania jej płatności oraz sposób ustalenia i zapłaty opłaty za przyłączenie,
(11) odpowiedzialność stron za niedotrzymanie warunków umowy i odstąpienie od umowy,
(12) sposób wymiany danych i informacji oraz klauzule poufności,
(13) sposób koordynacji prac wykonywanych przez strony oraz kontroli dotrzymania warunków umowy,
(14) zakres i terminy przeprowadzania prób i odbiorów częściowych i ostatecznego odbioru przyłącza oraz przyłączonych urządzeń, instalacji lub sieci,
(15) planowane ilości energii elektrycznej pobieranej oraz przewidywany termin rozpoczęcia dostawy lub poboru energii elektrycznej,
(16) warunki udostępniania OSP nieruchomości należącej do podmiotu przyłączanego w celu budowy lub rozbudowy sieci niezbędnej do realizacji przyłączenia,
(17) przewidywany termin zawarcia umowy przesyłania,
(18) termin ważności umowy oraz postanowienia dotyczące zmiany warunków umowy, rozwiązania umowy i trybu rozstrzygania sporów.

2.2.1.3.4. OSP oraz podmiot, z którym zawarto umowę o przyłączenie powołują niezależne Komisje Odbioru odpowiednio do zakresu prac realizowanych przez każdą ze stron.

2.2.1.3.5. Zakres prób i odbiorów częściowych i ostateczny odbiór przyłącza oraz przyłączonych urządzeń, instalacji lub sieci, musi być zgodny z warunkami umowy o przyłączenie.

2.2.1.3.6. Zasady przyjmowania do eksploatacji obiektów, układów, urządzeń i instalacji omówione są w pkt 4.1.2.

2.2.1.4. Uzgadnianie warunków przyłączenia do sieci oraz zakresu i warunków wykonania ekspertyzy

2.2.1.4.1. Uzgodnienia z OSP wymagają warunki przyłączenia do sieci dystrybucyjnej oraz zakres i warunki wykonania ekspertyzy wpływu przyłączanych urządzeń, instalacji lub sieci na system elektroenergetyczny (dalej „założenia do ekspertyzy”), w przypadku:
(1) urządzeń, instalacji i sieci należących do podmiotów zaliczanych do II grupy przyłączeniowej,
(2) połączeń sieci krajowych i międzynarodowych o napięciu znamionowym 110 kV.

Nie wymaga sporządzenia ekspertyzy przyłączenie jednostek wytwórczych o łącznej mocy zainstalowanej nie większej niż 2 MW, lub urządzeń odbiorczy końcowego o łącznej mocy przyłączeniowej nie większej niż 5 MW.

2.2.1.4.2. Wzory wniosków określone przez przedsiębiorstwa energetyczne zajmujące się przesyłaniem lub dystrybucją energii elektrycznej, w zakresie przyłączenia do sieci urządzeń, instalacji i sieci należących do podmiotów zaliczanych do I lub II grupy przyłączeniowej, powinny zawierać zakres informacji nie mniejszy niż zawarty we wzorach wniosków określonych przez OSP.

2.2.1.4.3. Przedsiębiorstwo energetyczne nie będące operatorem, przed wydaniem warunków przyłączenia dla podmiotu zaliczanego do I lub II grupy przyłączeniowej, uzgadnia je z operatorem, do którego sieci przedsiębiorstwo to jest przyłączone.

2.2.1.4.4. Jeżeli określone przez przedsiębiorstwo energetyczne warunki przyłączenia wymagają, zgodnie z postanowieniami pkt 2.2.1.4.3, uzgodnienia z OSP, uzgodnienie tych dokonuje OSD właściwy dla miejsca przyłączenia.

2.2.1.4.5. Dla połączeń międzysystemowych sieci przesyłowej stosowane są wymagania ENTSO-E.

2.2.1.4.6. W celu uzgodnienia założeń do ekspertyzy, o których mowa w pkt 2.2.1.4.1, w przypadku gdy planowane przyłączenie ma nastąpić na napięciu 110 kV do stacji NN/WN, gdzie za prowadzenie ruchu sieciowego rozdzielni 110 kV jest odpowiedzialny OSD, OSD występuje do OSP w formie pisemnej. Kopię wystąpienia, OSD przesyła również spółce obszarowej OSP, właściwej ze względu na miejsce przyłączenia oraz dodatkowo za pośrednictwem poczty elektronicznej na adres wskazany przez OSP.

2.2.1.4.7. W innych przypadkach niż określone w pkt 2.2.1.4.6, OSD występuje do OSP tylko za pośrednictwem poczty elektronicznej na adres wskazany przez OSP.

2.2.1.4.8. Uzgodnienia założeń do ekspertyzy, o których mowa w pkt 2.2.1.4.6, OSP dokonuje w formie pisemnej, natomiast uzgodnienia założeń do ekspertyzy, o których mowa w pkt 2.2.1.4.7, OSP dokonuje za pośrednictwem poczty elektronicznej na adres, z którego OSP otrzymał wystąpienie.

2.2.1.4.9. Założenia do ekspertyzy są ważne przez okres 1-go roku od daty ich uzgodnienia przez OSP. Za datę uzgodnienia przyjmuje się datę wysłania przez OSP pisma lub uzgodnienia w formie elektronicznej zgodnie z pkt 2.2.1.4.8.

2.2.1.4.10. W celu uzgodnienia warunków przyłączenia do sieci dystrybucyjnej, OSD przesyła do OSP, projekt warunków przyłączenia, do których załącza następujące dokumenty:

(1) kopię wniosku o określenie warunków przyłączenia,
(2) ekspertyzę, wykonaną na warunkach i w zakresie uzgodnionym z OSP.
Dopuszcza się przesłanie ekspertyzy w wersji elektronicznej na nośniku danych.

Kopię wystąpienia, OSD przesyła również spółce obszarowej OSP, właściwej ze względu na miejsce przyłączenia oraz dodatkowo za pośrednictwem poczty elektronicznej na adres wskazany przez OSP.

2.2.1.4.11. Uzgodnienia warunków przyłączenia OSP dokonuje w formie pisemnej.

Kopię uzgodnienia OSP wysyła również pocztą elektroniczną na adres, z którego OSP otrzymał od OSD kopię wystąpienia, o której mowa w pkt 2.2.1.4.10.

2.2.1.4.12. Współpraca pomiędzy OSP a OSD, o której mowa w pkt 1.A.4 IRiESP - Część ogólna, w zakresie określonym postanowieniami pkt 2.2.1.4 niniejszej części IRiESP, realizowana jest według poniższych zasad:

1) OSDp realizuje obowiązki w zakresie współpracy z OSP, uwzględniając warunki pracy sieci dystrybucyjnych tych OSDn, którzy są zobowiązani do realizacji obowiązków w zakresie współpracy z OSP za pośrednictwem tego OSDp,

2) gdy OSDn posiada bezpośrednio połączenia z siecią dystrybucyjną więcej niż jednego OSDp, współpraca z OSP jest realizowana przez tego OSDn za pośrednictwem każdego z tych OSDp, odpowiednio do obszaru sieci dystrybucyjnej OSDn i obszaru sieci dystrybucyjnej tych OSDp,

3) gdy dany OSDn nie posiada bezpośrednich połączeń z siecią dystrybucyjną OSDp, to taki OSDn realizuje obowiązki w zakresie współpracy z OSP, za pośrednictwem OSDp, do którego sieci przyłączony jest podmiot, z którym połączona jest sieć OSDn, z uwzględnieniem postanowień pkt (2).

2.2.2. Zasady odłączania od sieci

2.2.2.1. OSP odłącza od sieci przesyłowej urządzenia, instalacje lub sieci podmiotów na wniosek podmiotu przyłączonego do sieci przesyłowej.

2.2.2.2. Wniosek o odłączenie od sieci przesyłowej, o którym mowa w pkt 2.2.2.1 zawiera w szczególności:

1) dotychczasowe miejsce przyłączenia urządzeń, instalacji lub sieci, których dotyczy odłączenie,

2) przyczynę odłączenia,

3) planowany termin odłączenia.

2.2.2.3. OSP rozpoznaje wniosek o odłączenie od sieci przesyłowej i określa:

1) miejsce przyłączenia urządzeń, instalacji lub sieci, których dotyczy odłączenie,

2) termin odłączenia,
(3) dane osoby odpowiedzialnej ze strony OSP za prawidłowe odczynienie urządzeń, instalacji lub sieci podmiotu,

(4) sposób odczynienia urządzeń, instalacji lub sieci podmiotu, obejmujący zakres prac niezbędnych do wykonania związanych z odczynieniem podmiotu, położenie łączników niezbędnych do wykonania planowanego odczynienia urządzeń, instalacji lub sieci podmiotu oraz harmonogram czynności łącznościowych w poszczególnych stacjach elektroenergetycznych,

(5) schemat sieci przesyłowej przed odczynieniem oraz po odczynieniu, obejmujący stacje elektroenergetyczne oraz linie, w otoczeniu urządzeń, instalacji i sieci odczynanego podmiotu.

2.2.2.4. OSP może odmówić odczynienia od sieci przesyłowej urządzeń, instalacji lub sieci wnioskodawcy, jeżeli stwierdzi, że dokonanie odczynienia stanowi:

(1) zagrożenie dla bezpieczeństwa pracy KSE,
(2) zagrożenie dla życia lub zdrowia ludzi,
(3) zagrożenie dla środowiska naturalnego.

W przypadku odmowy odczynienia OSP niezwłocznie zawiadamia Prezesa URE. Odczynienie nastąpi niezwłocznie po ustaniu zagrożeń, o których mowa w pkt (1) - (3).

2.2.2.5. OSP określając termin odczynienia urządzeń, instalacji lub sieci podmiotu od sieci przesyłowej, uwzględnia techniczne możliwości realizacji procesu odczynienia. Odczynany podmiot jest zawiadamiany przez OSP o rozpatrzeniu wniosku o odczynienie i o dacie odczynienia urządzeń, instalacji lub sieci w terminie nie krótszym niż 14 dni przed datą odczynienia.

2.2.2.6. OSP dokonuje zmian w układzie sieci przesyłowej umożliwiających odczynienie urządzeń, instalacji lub sieci podmiotu od sieci. Podmiot odczynany od sieci przesyłowej, uzgadnia z OSP tryb i terminy niezbędnej przebudowy lub likwidacji majątku sieciowego będącego własnością podmiotu, wynikające z odczynienia od sieci przesyłowej.

2.2.2.7. Postanowienia zawarte w IRiESP przestają obowiązywać odczynany podmiot z datą odczynienia od sieci przesyłowej. Ponowne przyłączenie urządzeń, instalacji lub sieci podmiotu do sieci przesyłowej odbywa się na zasadach takich samych jak dla nowo przyłączanych obiektów.

2.2.2.8. Uzgodnienia z OSP wymaga odczynienie od sieci urządzeń, instalacji lub sieci, dla których wymagane jest zgodnie z postanowieniami pkt 2.2.1.4.1 uzgodnienie z OSP warunków przyłączenia.
2.2.3. Wymagania techniczne dla urządzeń, instalacji i sieci wraz z niezbędną infrastrukturą pomocniczą

2.2.3.1. Zagadnienia ogólne

2.2.3.1.1. Wymagania techniczne określone w niniejszej części IRiESP, dotyczą urządzeń, instalacji lub sieci przyłączonych do sieci zamkniętej lub przyłączanych (planowanych do przyłączenia) do tej sieci.

2.2.3.1.2. Jeżeli w dacie wejścia w życie niniejszej części IRiESP urządzenia, instalacje lub sieci przyłączone do sieci zamkniętej nie spełniają wymagań technicznych, o których mowa w niniejszej części IRiESP, wówczas wymagania techniczne stawiane tym urządzeniom, instalacjom lub sieciami, muszą zostać spełnione po przeprowadzonej modernizacji, której zakres obejmuje również urządzenia, instalacje lub sieci nie spełniające wymagań.

2.2.3.1.3. Jeżeli ograniczenia techniczne, w tym zastosowana technologia urządzeń, instalacji lub sieci, pomimo planowanej do przeprowadzenia modernizacji, uniemożliwia spełnienie wymagań technicznych, o których mowa w niniejszej części IRiESP, wówczas podmiot posiadający ww. urządzenia, instalacje lub sieci, na etapie opracowywania założeń do planowanej modernizacji przekazuje OSP opinię o braku możliwości spełniania tych wymagań. Jeżeli OSP zgłosi uzasadnione wątpliwości dotyczące ww. opinii wówczas podmiot przedkładający tę opinię ma obowiązek przedłożyć OSP opinię w tym zakresie sporządzoną przez niezależną firmę ekspercką.

2.2.3.1.4. Urządzenia, instalacje i sieci podmiotów ubiegających się o przyłączenie, zgodnie z postanowieniami ustawy Prawo energetyczne, muszą spełniać wymagania techniczne i eksploatacyjne zapewniające:

1. bezpieczeństwo funkcjonowania systemu elektroenergetycznego,
2. zabezpieczenie systemu elektroenergetycznego przed uszkodzeniami spowodowanymi niewłaściwą pracą przyłączonych urządzeń, instalacji i sieci,
3. zabezpieczenie przyłączonych urządzeń, instalacji i sieci przed uszkodzeniami w przypadku awarii lub wprowadzenia ograniczeń w poborze lub dostarczaniu energii elektrycznej,
4. dotrzymanie w miejscu przyłączenia urządzeń, instalacji i sieci parametrów jakościowych energii elektrycznej,
5. możliwość dokonywania pomiarów wielkości i parametrów niezbędnych do prowadzenia ruchu sieciowego oraz rozliczeń za pobraną energię elektryczną,
6. spełnianie wymagań w zakresie ochrony środowiska, określonych w odrębnych przepisach.

2.2.3.1.5. Urządzenia, instalacje i sieci muszą spełniać wymagania określone w odrębnych aktach prawnym, w szczególności w regulacjach:
(1) zawartych w ustawie Prawo budowlane,
(2) o ochronie przeciwporażeniowej,
(3) o ochronie przeciwpożarowej,
(4) o systemie oceny zgodności,
(5) dotyczących technologii wytwarzania energii elektrycznej.

2.2.3.1.6. Przyłączenie urządzeń, instalacji i sieci, jak również modernizacja urządzeń, instalacji i sieci już przyłączonych, nie może powodować przekroczenia dopuszczalnych granicznych parametrów jakościowych energii elektrycznej w miejscach przyłączenia do sieci pozostałych podmiotów oraz obniżać poziomu niezawodności dostarczania energii elektrycznej.

2.2.3.1.7. Wymagania techniczne w zakresie urządzeń wytwórczych, sieci dystrybucyjnych, urządzeń odbiorców końcowych, połączeń międzysystemowych oraz linii bezpośrednich przyłączonych lub planowanych do przyłączenia, zawarte w niniejszej części IRiESP, obejmują wymagania techniczne dla:

(1) urządzeń, instalacji i sieci odbiorców energii elektrycznej,
(2) urządzeń, instalacji i sieci wytwórców energii elektrycznej,
(3) systemów telekomunikacji,
(4) układów pomiarowych energii elektrycznej,
(5) systemów pomiarowo - rozliczeniowych,
(6) układów elektroenergetycznej automatyki zabezpieczeniowej i urządzeń współpracujących,
(7) systemów transmisji danych i wymiany informacji.

2.2.3.1.8. Dla umożliwienia unifikacji rozwiązań technicznych w obrębie sieci zamkniętej, OSP publikuje standardy techniczne OŚP stosowane w sieci przesyłowej.

2.2.3.1.9. Wymagania techniczne dotyczące urządzeń, instalacji i sieci, które nie są lub nie będą przyłączone do sieci zamkniętej, mogą być zmienione poprzez indywidualne ich określenie w umowach o przyłączenie do sieci, umowach o świadczenie usług dystrybucji albo umowach komplekowych.

2.2.3.1.10. Dokonanie zmiany wymagań technicznych, o której mowa w pkt 2.2.3.1.9 wymaga uzgodnienia z OSD właściwym dla miejsca przyłączenia.

2.2.3.2. Wymagania techniczne dla urządzeń, instalacji i sieci odbiorców

2.2.3.2.1. Urządzenia, instalacje i sieci odbiorców przyłączone do sieci zamkniętej powinny być przystosowane do warunków zwarcích w miejscu ich przyłączenia oraz powinny być wyposażone w aparaturę zapewniającą likwidację zwać przez zabezpieczenia w strefie podstawowej w czasie nie przekraczającym:
2.2.3.2.2. Transformatory przyłączone do sieci zamkniętej, poprzez które zasilane są urządzenia, instalacje i sieci odbiorców, powinny być:

1. wyposażone w regulację zaczepową działającą pod obciążeniem,
2. przystosowane do współpracy z nadrzędnymi układaami regulacji.

2.2.3.2.3. Sieć zamknięta powinna pracować z bezpośrednio uziemionym punktem neutralnym w taki sposób, aby we wszystkich stanach ruchowych współczynnik zwarcia doziemnego, określony jako stosunek maksymalnej wartości napięcia fazowego podczas zwarcia z ziemią do wartości znamionowej napięcia fazowego w danym punkcie sieci, nie przekraczał poniższych wartości:

1. 1,3 - w sieci o napięciu znamionowym równym 220 kV lub wyższym;
2. 1,4 - w koordynowanej sieci 110 kV.

2.2.3.2.4. Spełnienie wymagań, o których mowa w pkt 2.2.3.2.3 jest możliwe przy zapewnieniu:

1. $1 \leq \frac{X_0}{X_1} \leq 2$ oraz $\frac{R_0}{X_1} \leq 0,5$ - w sieci o napięciu znamionowym równym 220 kV lub wyższym;
2. $1 \leq \frac{X_0}{X_1} \leq 3$ oraz $\frac{R_0}{X_1} \leq 1$ - w koordynowanej sieci 110 kV.

gdzie:
- X_1 - reaktancja zastępcza dla składowej symetrycznej zgodnej obwodu zwarcia doziemnego,
- X_0 i R_0 - reaktancja i rezystancja dla składowej symetrycznej zerowej obwodu zwarcia doziemnego.

2.2.3.2.5. W celu realizacji wymagań, o których mowa w pkt 2.2.3.2.3-4, uzwojenia transformatorów o napięciu znamionowym 110 kV i wyższym powinny być połączone w gwiazdę z punktem neutralnym, przystosowanym do uziemienia lub odziemienia.

2.2.3.2.6. W celu dotrzymania wymaganych parametrów jakościowych energii elektrycznej odbiorca przyłączony do sieci zamkniętej powinien instalować urządzenia eliminujące wprowadzanie odkształceń napięcia i prądu. Rodzaj instalowanych urządzeń, eliminujących wprowadzanie odkształceń napięcia i prądu, odbiorca powinien uzgodnić z operatorem właściwym dla miejsca przyłączenia.
2.2.3.2.7. Jeżeli do instalacji odbiory, przyłączonej do sieci zamkniętej, przyłączone są jednostki wytwórcze, wówczas powinny one spełniać wymagania techniczne, o których mowa w pkt 2.2.3.3.

2.2.3.3. **Wymagania i zalecenia techniczne dla urządzeń, instalacji i sieci wytwórców energii elektrycznej**

2.2.3.3.1. **Podstawowe wymagania i zalecenia techniczne dla jednostek wytwórczych konwencjonalnych przyłączonych do sieci zamkniętej**

2.2.3.3.1.1. Jednostki wytwórcze o mocy osiagalnej 50 MW lub wyższej, powinny być wyposażone w:

(1) regulator turbiny umożliwiający pracę w trybie regulacji prędkości obrotowej (regulator prędkości obrotowej typu P) zgodnie z zamodelowaną charakterystyką statyczną,

(2) regulator napięcia zdolny do współpracy z nadrzędnymi układami regulacji napięcia i mocy biernej,

(3) wyłącznik generatorowy,

(4) transformator blokowy z możliwością zmiany przekładni pod obciążeniem, którego zakres regulacyjny wynosi nie mniej niż ±10% Uₙ, przy zapewnieniu jednostkowej zmiany napięcia w granicach 1% Uₙ, o ile OSP nie określi innacez;

zgodnie z wymaganiami szczegółowymi, określonymi w pkt 2.2.3.3.

2.2.3.3.1.2. Jednostki wytwórcze ciepłne kondensacyjne i bloki gazowo-parowe, o mocy osiagalnej 100 MW lub wyższej, powinny posiadać zdolności techniczne w zakresie:

(1) pracy w regulacji pierwotnej;

(2) pracy w automatycznej regulacji wtórnej wg zadawanego zdalnie sygnału sterującego z regulatora centralnego LFC, przy czym w okresie przejściowym, czyli do zakończenia pełnego wdrożenia u wytwórców regulatora centralnego LFC, jednostki wytwórcze przyłączone do KSE, mają obowiązek posiadać zdolność współpracy zarówno z regulatorem centralnym LFC i regulatorem centralnym ARCM;

(3) zdalnego zadawania obciążenia bazowego;

(4) opanowywania zrzutów mocy do pracy na potrzeby własne (PPW);

zgodnie z wymaganiami szczegółowymi, określonymi w pkt 2.2.3.3.

2.2.3.3.1.3. Jednostki wytwórcze ciepłne, kondensacyjne oraz bloki gazowo - parowe, o mocy osiagalnej 100 MW lub wyższej, powinny być wyposażone w:

(1) system monitorowania pracy jednostek wytwórczych umożliwiający kontrolę wszystkich wielkości niezbędnych do operatywnego prowadzenia ruchu KSE, oceny ich pracy regulacyjnej oraz dokonywania analiz pracy systemu elektroenergetycznego, zgodnie z
wymaganiami OSP,

(2) system operatywnej współpracy z elektrowniami, umożliwiający wymianę informacji niezbędnych do operacyjnego zarządzania ruchem KSE, kompatybilny z systemem SOWE pracującym u OSP,

o ile OSP nie wyrazi zgody na odstępstwo od ich stosowania.

2.2.3.3.1.4. Opis funkcjonalny wymienionych w pkt 2.2.3.3.1.3 systemów zawierają pkt 6.2 - 3, natomiast wymagania techniczne pkt 2.2.3.9 - 11.

2.2.3.3.1.5. Jednostki wytwórcze powinny być wyposażone w bezprzerwowo działające automatyczne układy wzbudzenia, utrzymujące napięcie na zaciskach jednostek wytwórczych stabilnie w pełnym zakresie regulacji.

2.2.3.3.1.6. Układy wzbudzenia jednostek wytwórczych powinny być wyposażone w następujące urządzenia:

(1) jeden obwód regulacji napięcia jednostki wytwórczej z możliwością zdalnego sterowania wartością zadaną,

(2) ogranicznicznik minimalnej mocy biernej (kąta mocy),

(3) ogranicznicznik maksymalnego prądu stojana,

(4) ogranicznicznik maksymalnego prądu wirnika,

(5) ogranicznicznik indukcji,

(6) stabilizator systemowy,

(7) obwód regulacji napięcia wzbudzenia lub prądu wzbudzenia jednostki wytwórczej.

2.2.3.3.1.7. Rodzaj instalowanych układów regulacji napięcia, stabilizatorów systemowych oraz ich nastawienia, wymagają uzgodnienia z OSP. Jednostki wytwórcze powinny być wyposażone w stabilizatory systemowe dwuwejściowe.

2.2.3.3.1.8. Układ regulacji napięcia wzbudzenia jednostki wytwórczej powinien zapewnić pułap napięcia wzbudzenia o wartości niżej niż 1,5-krotna wartość znamionowego napięcia wzbudzenia. W przypadku wzbudnictwa statycznych, pułap napięcia wzbudzenia powinien być dobierany z uwzględnieniem warunku zapewnienia selektywnej pracy zabezpieczeń jednostki wytwórczej oraz prawidłowego zasilania urządzeń potrzeb własnych jednostki wytwórczej.

2.2.3.3.1.9. Układ wzbudzenia i regulacji napięcia jednostki wytwórczej powinien zapewnić stromaść narastania napięcia wzbudzenia nie mniejszą niż 1,5% napięcia znamionowego na sekundę.

2.2.3.3.1.10. Regulator napięcia jednostki wytwórczej powinien zapewnić możliwość regulacji napięcia na zaciskach jednostki wytwórczej co najmniej w przedziale od 80 do 110% napięcia znamionowego generatora.

2.2.3.3.1.11. Zakres nastaw kompensacji prądowej regulatora napięcia jednostki wytwórczej nie powinien być mniejszy niż ±15% dla mocy czynnej
i biernej.

2.2.3.3.1.12. Regulator napięcia jednostki wytwórczej powinien utrzymywać następującą zależność napięć generatora od częstotliwości:

\[
\frac{\Delta U_g}{\Delta f} \leq 0.05 \quad dla \quad f \geq 48 \text{ Hz}
\]
\[
U_g \leq \frac{f}{48} U_{g48} \quad dla \quad f < 48 \text{ Hz}
\]

gdzie:
- \(\Delta f\) - zmiana częstotliwości, w jednostkach względnych,
- \(\Delta U_g\) - zmiana napięcia na zaciskach jednostki wytwórczej odpowiadająca zmianie częstotliwości o \(\Delta f\), w jednostkach względnych,
- \(U_g\) - napięcie na zaciskach jednostki wytwórczej przy częstotliwości \(f\),
- \(U_{g48}\) - napięcie na zaciskach jednostki wytwórczej przy częstotliwości 48 Hz.

2.2.3.3.1.13._po zadanej skokowej zmianie wartości napięcia podczas biegu jałowego jednostki wytwórczej o \(\pm 10\%\), czas doprowadzenia napięcia do wartości znamionowej przez regulator napięcia powinien być krótszy niż:

(1) 0,3 s - dla statycznych tyrystorowych układów wzbudzenia,
(2) 1 s - dla elektromaszynowych układów wzbudzenia.

2.2.3.3.1.14. Po zrzucie mocy biernej wytwarzanej przez jednostkę wytwórczą od wartości znamionowej mocy biernej do biegu jałowego, czas regulacji napięcia jednostki wytwórczej powinien być krótszy niż:

(1) 0,5 s - dla statycznych tyrystorowych układów wzbudzenia,
(2) 1,5 s - dla elektromaszynowych układów wzbudzenia.

2.2.3.3.1.15. Przy samowzbudzeniu się Jednostki wytwórczej z automatyczną regulacją napięcia zwiększenie napięcia jednostki wytwórczej przez regulator nie może przekroczyć 15\% wartości napięcia znamionowego.

2.2.3.3.1.16. Regulator napięcia jednostki wytwórczej powinien zapewnić jej stabilną pracę w całym podanym przez wytwórnię dozwolonym obszarze pracy, przy mocy zwarciowej sieci po stronie wyższego napięcia transformatora blokowego równej czterokrotniej wartości znamionowej mocy pozornej jednostki wytwórczej.

2.2.3.3.1.17. Ograniczniki maksymalnych prądów stojana i wirnika jednostki wytwórczej powinny spełniać następujące wymagania:

(1) ograniczniki maksymalnych prądów stojana i prądów wirnika powinny zmniejszać wartość zadaną napięcia jednostki wytwórczej w przypadku, gdy prąd stojana lub wirnika przekroczy nastawioną wartość;
(2) ogranicznik prądu stojana nie powinien zmniejszać wartości zadanej napięcia jednostki wytwórczej w przypadku, gdy przeciążenie stojana jest spowodowane prądem pojemnościowym;

(3) zakresy nastawy ograniczanych wartości prądu stojana i prądu wirnika powinny być zawarte w przedziale od 80 do 110% wartości znamionowej;

(4) prąd stojana i prąd wirnika powinny być ograniczone z dokładnością nie mniejszą od ±5% wartości znamionowej, w zakresie zmian napięcia od 80 do 100% napięcia znamionowego;

(5) ogranicznik maksymalnego prądu stojana powinien być wyposażony w element zwłoczny, dopuszczający krótkotrwałe przeciążenia jednostki wytwórczej w granicach dozwolonych w instrukcji producenta jednostki wytwórczej, przy czym czas zwłoki powinien być zależny od wielkości przeciążenia i być krótszy od czasu działania zabezpieczenia nadmiarowo - prądowego zwłocznego jednostki wytwórczej;

(6) działanie ograniczników powinno być sygnaлизowane.

2.2.3.1.18. Układ wzbudzenia powinien zapewnić potrzebom własnym jednostki wytwórczej spełnienie następujących wymagań:

(1) poprawną pracę w warunkach normalnych oraz innych stanach pracy systemu elektroenergetycznego określonych w pkt 4.3.11.4;

(2) po zwarciu trójfazowym na zaciskach strony górnego napięcia transformatora blokowego układ wzbudzenia powinien zapewnić odbudowę napięcia na szynach potrzeb włączających do wartości 70% napięcia znamionowego w przeciągu 1 s od momentu wyłączenia jednostki wytwórczej z sieci przez zabezpieczenia rezerwowe o najdłuższym czasie działania.

2.2.3.1.19. Moc osiągalna jednostki wytwórczej nie może być większa niż najmniejsza z mocy znamionowych głównych urządzeń wchodzących w skład jednostki wytwórczej (kocioł, turbina, generator, transformator blokowy).

2.2.3.1.20. Przy zwyczce częstotliwości do 52,5 Hz jednostka wytwórcza nie powinna być wyłączona z sieci zamkniętej przed osiągnięciem obrotów powodujących zadziałanie zabezpieczenia od zwyki obrotów.

2.2.3.1.21. Jeżeli dwie lub więcej jednostek wytwórczych pracuje na jeden transformator lub linię elektroenergetyczną, to w przypadku odczynienia się jednostek wytwórczych od sieci zamkniętej, ich praca równoległa powinna być przerwana. Dopuszcza się pracę równoległą, jeżeli układy regulacji turbin i generatorów zostały do tego przystosowane.

2.2.3.1.22. Jednostki wytwórcze powinny mieć możliwość synchronizacji z siecią w przedziale częstotliwości od 48,0 do 51,5 Hz.

2.2.3.1.23. Jednostki wytwórcze powinny mieć możliwość pracy w przedziale częstotliwości:
(1) od 49,0 do 48,5 Hz w sposób ciągły przez 30 minut, łącznie 3 godziny w roku,
(2) od 48,5 do 48,0 Hz w sposób ciągły przez 20 minut, łącznie 2 godziny w roku;
(3) oraz w przedziale od 48,0 do 47,5 Hz w sposób ciągły przez 10 minut, łącznie 1 godzinę w roku.
Przy spadku częstotliwości poniżej 48,5 Hz mocy wytwarzane jednostek wytwórczych powinny wynosić co najmniej 95% mocy znamionowych, z zachowaniem liniowej charakterystyki spadku mocy w przedziale od 48,5 do 47,5 Hz zgodnie z poniższym rysunkiem.

Rysunek 2.2.3.3.1.23
Charakterystyka zdolności jednostki wytwórczej do generacji mocy czynnej w funkcji częstotliwości

2.2.3.3.1.24. Wszystkie wymagania dotyczące mocy czynnych wytwarzanych przez jednostki wytwórcze powinny być spełnione również w sytuacji, gdy napięcie sieci, do której są przyłączone jednostki wytwórcze spada do poziomu 85% wartości znamionowej. W przypadku, spadku napięcia w miejscu przyłączenia poniżej 85% wartości znamionowej jednostka wytwórcza powinna zachować zdolność do pracy synchronicznej, przy czym dopuszcza się, po wykorzystaniu pełnych możliwości regulacyjnych transformatorów blokowych, większe niż określone w pkt 2.2.3.3.1.23 zaniemienie, względem mocy osiagalnej, generowanej mocy czynnej.

2.2.3.3.1.25. Jednostka wytwórcza powinna mieć zapewnioną możliwość pracy bez
ograniczeń czasowych w przedziale częstotliwości od 49 do 51 Hz i w przedziale napięcia na zaciskach generatora od 95 do 105% napięcia znamionowego, z zachowaniem zdolności do generacji mocy osiąganej przy znamionowych współczynnikach mocy.

2.2.3.3.1.26. Przy obciążeniu mocą znamionową jednostka wytwórcza musi posiadać zdolność do generacji mocy biernej przy znamionowym współczynniku mocy \(\cos \varphi = 0,85 \) (o charakterze indukcyjnym) i poboru mocy biernej przy współczynniku mocy \(\cos \varphi = 0,95 \) (o charakterze pojednnościowym). Przy obciążeniu mocą czynną niższą niż znamionowa jednostka wytwórcza musi posiadać zdolność do generacji całej dostępnej mocy biernej, zgodnie z wykresem kołowym generatora.

2.2.3.3.1.27. Jednostka wytwórcza wraz z urządzeniami potrzeb własnych i potrzeb ogólnych elektrowni (w tym z napędami wraz z ich układami sterownia), przy spadku częstotliwości do poziomu 47,5 Hz i spadku napięcia do poziomu 80% napięcia znamionowego w miejscu przyłączenia musi posiadać zdolność do pracy synchronicznej przy zachowaniu wymaganych poziomów mocy określonych w pkt 2.2.3.3.1.24 - 25 i zapewnieniu możliwości przejścia do PPW.

2.2.3.3.1.28. Jednostki wytwórcze powinny być wyposażone w następujące układy elektroenergetycznej automatyki zabezpieczeniowej:

- (1) od zwarcia zewnętrznych w sieci,
- (2) od zwarcia wewnętrznych w jednostce wytwórczej,
- (3) od zwarcia wewnętrznych w transformatorze blokowym,
- (4) ziemnozwarcowe w punkcie neutralnym transformatora blokowego,
- (5) nadnapięciowe,
- (6) od utraty wzbudzenia,
- (7) od asymetrii obciążenia,
- (8) od mocy zwrotnej,
- (9) rezerwowe od zwarcia wewnętrznych w transformatorze blokowym lub w linii blokowej,
- (10) od poślizgu biegunów.

2.2.3.3.1.29. Jednostki wytwórcze powinny mieć możliwość pracy bez wyłączeń, w przypadku wystąpienia składowej przeciwnej prądu w czasie zwarcie dwufazowych likwidowanych z czasem działania zabezpieczeń rezerwowych w sieci przesyłowej.

2.2.3.3.1.30. Jednostki wytwórcze powinny być przystosowane do utrzymania się w pracy w przypadku wystąpienia bliskich zwarcie likwidowanych w czasie nie dłuższym niż:

- (1) 120 ms - dla sieci o napięciu znamionowym 220 kV lub wyższym,
- (2) 150 ms - dla koordynowanej sieci 110 kV.
2.2.3.3.1.31. Nastawienia zabezpieczeń jednostek wytwórczych przyłączonych do sieci powinny być skoordynowane z nastawieniami zabezpieczeń w sieci.

2.2.3.3.1.32. Zaleca się, aby czasy rozruchu jednostek wytwórczych wynosiły odpowiednio:

(1) przy postoju do 8 godzin - czas rozruchu do 2 godzin;
(2) przy postoju od 8 do 50 godzin - czas rozruchu do 3 godzin;
(3) przy postoju powyżej 50 godzin - czas rozruchu do 5 godzin.

Czas rozruchu jednostek wytwórczych OSP określa indywidualnie, przy uwzględnieniu możliwości i ograniczeń zastosowanej technologii wytwarzania energii elektrycznej.

2.2.3.3.1.33. Zmiany mocy pracującej jednostki wytwórczej w zakresie od minimum technicznego do mocy osiągalnej (P_{min} - P_{os}) wymuszone zmianami wartości zadanej mocy powinny być realizowane z szybkością od 2 do 8% mocy osiągalnej na minutę (przy wyłączonej regulacji pierwotnej i wtórnej). Szybkość tą OSP określa indywidualnie dla każdej jednostki wytwórczej, przy uwzględnieniu możliwości i ograniczeń zastosowanej technologii wytwarzania energii elektrycznej.

2.2.3.3.1.34. Zaleca się, aby jednostki wytwórcze miały możliwość pracy w zakresie od 40 do 100% mocy znamionowej.

Minimalny, wymagany poziom mocy, przy której jednostka wytwórcza pracuje w sposób trwały, OSP określa indywidualnie przy uwzględnieniu możliwości i ograniczeń zastosowanej technologii wytwarzania energii elektrycznej.

2.2.3.3.1.35. Zaleca się, aby jednostki wytwórcze były przystosowane do co najmniej 200 rozruchów w ciągu roku.

2.2.3.3.2. Szczegółowe wymagania techniczne dla jednostek wytwórczych konwencjonalnych przyłączonych do sieci zamkniętej

2.2.3.3.2.1. Wymagania techniczne dla układów regulacji pierwotnej, wtórnej i trójnej oraz automatycznych układów grupowej regulacji napięć jednostek wytwórczych

2.2.3.3.2.1.1. Urządzenia do regulacji pierwotnej, w jednostkach wytwórczych biorących udział w regulacji pierwotnej, powinny spełniać następujące wymagania:

(1) zapewniać zadawanie regulacji pierwotnej jednostki wytwórczej w przypadku zmiany częstotliwości w czasie nie dłuższym niż 30 s i osiągnąć cały zakres odpowiedzi, wynikający z ustawionego statyzmu regulatora prędkości obrotowej oraz odchyłki częstotliwości, z dokładnością δp = ±1% mocy znamionowej P_{in};

(2) być zdolne do wyzwolenia bardzo szybkiej zmiany mocy regulacyjnej pierwotnej ΔP(Δf) = ± 5% P_{in}, dostępnej w całym paśmie mocy.
regulacyjnej jednostki wytwórczej (Pmin ÷ Pos) wraz z brzegowymi zapasami regulacji +2,5% Pos na górnym brzegu oraz –2,5% Pos na dolnym brzegu, z odpowiedzią na skok mocy zadanej ΔPₚ(Δf) = 0 +5% Pₙ osiąganą w czasie 30 s tj. ΔP(t<30 s) = ±5% Pₙ, z dokładnością w stanie ustalonym po 30 s δp ≤ ±1% Pₙ, przy czym co najmniej 50% rezerwy regulacji musi być uaktywnione w czasie 15 sekund, pozostały zakres musi być uaktywniony w czasie do 30 sekund;

(3) nieczułość układów regulacji częstotliwości nie powinna być większa niż Δfᵢ = ±10 mHz;

(4) cykl pomiaru częstotliwości dla działania regulacji pierwotnej powinien wynosić nie mniej niż raz na sekundę;

(5) korekcja częstotliwości w układzie regulacji mocy powinna być możliwa do ustawienia w przedziale co najmniej ΔP(Δf) = ±5% Pₙ przy zmianach statyzmu regulatora s = 2…8% i strefy martwej częstotliwości Δf₀ = (0, ±10, ..., ±500) mHz;

(6) struktura układów regulacji prędkości obrotowej i mocy powinna zapewniać stabilną pracę KSE przy występowaniu zakłóceń poprzez właściwe współdziałanie szybko reagującego regulatora prędkości obrotowej z wolno reagującym regulatorem mocy;

(7) struktura układu regulacji powinna umożliwiać blokowanie działania regulacji pierwotnej poprzez ustawienie strefy martwej, na poziomie określonym przez OSP, bez eliminacji sygnału korekcji mocy od częstotliwości (bez przerywania toru korekcji mocy od częstotliwości);

(8) dopuszcza się, aby regulacja pierwotna i wtórna na blokach gazowo-parowych była realizowana tylko przez turbozespoł gazowy, przy zapewnieniu zakresu zmian mocy w torze regulacji pierwotnej ±5% Pₜₙ, przy czym moc osiągalna wyznaczana jest jako suma mocy osiągalnych turbozespołu gazowego i parowego. Zmiany mocy turbozespołu parowego nadążającego za zmianami mocy turbozespołu gazowego nie powinny zakłócać pracy regulacji pierwotnej realizowanej przez turbozespoł gazowy.

2.2.3.3.2.1.2. Regulacja wtórna jest realizowana w ramach centralnego systemu automatycznej regulacji częstotliwości i mocy poprzez:

(1) regulator centralny ARCM i współpracujące z nim jednostki wytwórcze elektrowni cieplnych odpowiadające na zmianę sygnału Y₁ oraz jednostki wytwórcze elektrowni wodnych odpowiadające na zmianę sygnału Y₁ₖ. Sposób dystrybucji sygnałów regulacyjnych określa OSP.

(2) regulator centralny LFC i współpracujące z nim jednostki wytwórcze elektrowni odpowiadające na zmianę indywidualnych sygnałów regulacyjnych, wymuszających zmianę mocy w torze regulacji wtórnej ΔPₜₙ_zadane. Szczegółowe wymagania w zakresie protokołów komunikacyjnych oraz charakterystyka sygnałów regulacyjnych są określone w standardach regulatora centralnego LFC, publikowanych na stronach internetowych OSP.
2.2.3.3.2.1.3. Jednostki wytwórcze biorące udział w regulacji wtórnej powinny spełniać następujące wymagania:

(1) dla współpracy z regulatorem centralnym ARCM:
 (1.1) zdolność do wyzwolenia szybkiej zmiany mocy regulacyjnej wtórnej $\Delta P(t)$ równomiernie nadającą za zmianami mocy zadanej $\Delta P_Y(-31...0...+31) = (-5\%...0...+5\%) P_n$;
 (1.2) dostępność mocy regulacyjnej dla regulacji sygnałem Y_1 w całym paśmie mocy regulacyjnej jednostki wytwórczej ($P_{min} + Pos$);

(2) dla współpracy z regulatorem centralnym LFC:
 (2.1) zdolność do wyzwolenia szybkiej zmiany mocy regulacyjnej wtórnej $\Delta P(t)$ równomiernie nadającą za zmianami sygnałów regulacyjnych, wymuszających zmianę mocy w torze regulacji wtórnej $\Delta P_{w,zadane}$;
 (2.2) dostępny zakres oraz szybkość zmian mocy dla regulacji wtórnej nie mogą być mniejsze niż w przypadku współpracy z regulatorem centralnym ARCM;
 (2.3) przy współpracy regulacji wtórnej z regulacją pierwotną, na tle zmian mocy $P(t)$ podążających za zmianami sygnału zadanego regulacji wtórnej powinny być spełnione także wymagania określone dla regulacji pierwotnej.

2.2.3.3.2.1.4. Wymaga się, aby urządzenia do regulacji wtórnej w jednostkach wytwórczych elektrowni wodnych, które w dniu wejścia IRiESP w życie posiadają zdolność do udziału w regulacji wtórnej, utrzymywały tę zdolność. W szczególności wymaga się utrzymywania zdolności do wyzwolenia szybkiej zmiany mocy regulacyjnej wtórnej $\Delta P(t)$ równomiernie nadającą za zmianami mocy zadanej $\Delta P_{Y1s} = 0...> \pm 5\% P_n$ z dokładnością regulacji mocy $\delta P < \pm 1\% P_n$ (t > 30 s) dostępnej w całym paśmie mocy regulacyjnej hydrozespołu.

2.2.3.3.2.1.5. Zdalne zadawanie obciążenia bazowego bloku w ramach regulatora centralnego ARCM realizowane jest przez jednostki wytwórcze elektrowni cieplnych, odpowiadające na zmianę sygnału Y_0. Sposób dystrybucji sygnałów regulacyjnych określa OSP.

2.2.3.3.2.1.6. Wymaga się, aby obiektowe układy regulacji, które w dniu wejścia IRiESP w życie, posiadają zdolność realizacji obciążenia bazowego bloku zadawanego sygnałem Y_0 utrzymywały tę zdolność, przy spełnieniu wymagań szczegółowych:

(1) jednostki wytwórcze elektrowni cieplnych powinny być przystosowane do sterowania zdalnego sygnałem $Y_0(i)$ z mocą regulacyjną $P(t)$ nadającą za zmianami mocy zadanej $\Delta P_{Y0(i)}$ przy regulacji automatycznej (zdalnie sterowanej z regulatora centralnego) lub przy
regulacji ręcznej, zmieniającej się z prędkością średnio 2% \(P_n \)/min, z dokładnością regulacji mocy \(\delta p < \pm 1\% P_n \) (\(t > 5 \) min) w całym dostępnym pasmie mocy regulacyjnej bloku;

(2) sygnał \(Y_{0(i)} \) może być wykorzystywany jako rezerwowy sposób zadawania obciążenia bazowego jednostek w przypadku awarii systemów teleinformatycznych OSP lub w sytuacji zagrożenia bezpieczeństwa dostaw energii elektrycznej;

(3) wytwórcy muszą posiadać możliwość ręcznego lub automatycznego załączenia/wyłączenia do pracy układu regulacji z sygnałem \(Y_{0(i)} \) na polecenie OSP.

2.2.3.3.2.1.7. Wymagania techniczne dla automatycznych układów regulacji napięć w węzłach wytwarzających (dalej „układ ARNE”):

(1) układ ARNE powinien umożliwiać regulację napięcia w stacji, do której są przyłączone jednostki wytwarzacze, w zakresie zmian mocy bieżnej w pełnym obszarze wynikającym z wykresu kołowego generatorów tych jednostek;

(2) układ ARNE powinien być przystosowany do współpracy z układem regulacji napięcia ARST, sterującym przekładnią transformatorów sprzęgłowych w stacji do której przyłączone są jednostki wytwarzacze;

(3) układ ARNE powinien funkcjonować tak, aby częstość zmian
przełączników zaczepów transformatorów sprzęgłowych w stacji, do której przyłączone są jednostki wytwórcze, nie przekraczała średniej dobowej częstotliwości dopuszczalnej dla danego przełącznika;

(4) układ ARNE powinien umożliwiać zregulowanie odchyłki napięcia do wartości zadanej w czasie krótszym niż 3 minuty (dla układu ARST czas zregulowania odchyłki nie jest normowany);

(5) układ ARNE powinien blokować swoje działanie w przypadku przekroczenia granicznych wartości napięcia regulowanego;

(6) układ ARNE powinien blokować swoje działanie w przypadku przekroczenia granicznej wartości napięcia jednostki wytwórczej;

(7) układ ARNE nie może powodować oscylacji napięć rozdzielni oraz mocy biernych podczas cyklu jego działania;

(8) układ ARNE powinien zapewniać równomierny rozdział mocy biernej dla jednostek wytwórczych o jednakowej mocy znamionowej pracujących na dany system szyn rozdzielni, a dla jednostek wytwórczych o różnych mocach znamionowych układ powinien zapewnić rozdział mocy biernej proporcjonalny do ich mocy;

(9) układ ARNE powinien umożliwiać zadawanie wartości regulowanych miejscowo i zdalnie z nadrzędnych ośrodków dyspozycji mocy;

(10) układ ARNE powinien umożliwiać zadawanie wartości napięć w zakresie dopuszczalnych zmian napięcia określonych dla danej rozdzielni przez OSP;

(11) układ ARNE powinien umożliwiać nastawianie granicznej wartości napięcia jednostki wytwórczej, zgodnie z zależnością \(U_{g_{\text{max}}} < 1,1 U_{gn} \) (\(U_{gn} \) - napięcie znamionowe jednostki wytwórczej);

(12) układ ARNE powinien umożliwiać nastawianie marginesów bezpieczeństwa 2,5 - 5% \(Q_{g_{\text{max}}} \) tak by zmiana mocy biernej nie powodowała trwałego działania ograniczników jej regulacji (dla układu ARST regulacja przekładni transformatorów sprzęgłowych powinna się odbywać w strefie ograniczonej dopuszczalnymi wartościami prądów i napięć strony pierwotnej i wtórnej, przekroczenie tej strefy powinno powodować zablokowanie działania układu regulacji w kierunku,
którym przekroczenie dopuszczalnych wartości mogłoby się pogłębić; (16) układ ARNE powinien umożliwiać nastawy czasów przerwy między impulsami sterującymi nastawnikami regulatorów napięcia jednostek wytwórczych - \(tp > 5 \text{ s} \) (dla układu ARST zakres nastawy czasów przerwy między impulsami sterującymi przełącznikami zaczepek transformatorów powinien wynosić 3 min < \(tp < 30 \text{ min} \)).

2.2.3.3.2.2. Wymagania techniczne dla jednostek wytwórczych w zakresie zdolności do obrony i odbudowy zasilania KSE

2.2.3.3.2.2.1. Wymagania techniczne w zakresie przystosowania jednostek wytwórczych do udziału w obronie i odbudowie zasilania KSE, są obligatoryjne dla wszystkich podmiotów posiadających jednostki wytwórcze o mocy osiągalnej równej 50 MW lub wyższej, o ile OSP nie wyrazi zgody na odstępstwa od ich stosowania.

2.2.3.3.2.2.2. Szczegółowe wymagania techniczne są określone przez OSP odrębnie dla każdej jednostki wytwórczej przewidzianej do udziału w obronie i odbudowie zasilania KSE, zależnie od jej położenia w KSE oraz jej roli w procesie obrony i odbudowy zasilania KSE, i powinny zostać uwzględnione w planach działań w warunkach utraty połączenia z KSE lub całkowitego zaniku napięcia w tym systemie.

2.2.3.3.2.2.3. W ramach przystosowania jednostek wytwórczych elektrowni do udziału w obronie i odbudowie zasilania KSE wyróżnia się:

(1) zdolność elektrowni do pracy w układzie wydzielonym - zdolność elektrowni do awaryjnego przejścia do pracy samodzielnej, przy braku zasilania z KSE, wg uzgodnionego z OSP planu, i trwałej pracy w tym układzie oraz gotowość do realizacji poleceń OSP w zakresie zwiększania obszaru wydzielonego;

(2) zdolność elektrowni do samostartu - zdolność do uruchomienia elektrowni bez zasilania z KSE, wg uzgodnionego z OSP planu, i trwałej pracy w układzie wydzielonym oraz gotowość do realizacji poleceń OSP w zakresie uruchamiania kolejnych elektrowni i zwiększania obszaru wydzielonego.

2.2.3.3.2.2.4. Regulatory turbin jednostek wytwórczych w zakresie zdolności do obrony i odbudowy zasilania KSE powinny:

(1) być zdolne do pracy w trybie regulacji prędkości obrotowej, realizowanej przez proporcjonalny regulator prędkości obrotowej RO(P), zgodnie z zamodelowaną charakterystyką statyczną (zdolność do prowadzenia regulacji częstotliwości w sieci elastycznej, wielomaszynowej);

(2) posiadać zdolność do wyprzedzającej, automatycznej zmiany trybu pracy regulatora turbiny z trybu regulacji mocy RN(PI) na tryb regulacji prędkości obrotowej RO(P);

(3) zapewniać pewne nabieranie skokowych przyrostów mocy od 0 aż do \(+0,1 \text{ P}_{\text{n}} \) podczas ponownego przy odbudowie przyłączenia obciążenia lub
gradientowego przyrastania mocy z szybkością $v = 1...4\% P_n/\text{min}$ podczas quasiliniowego obciążania odbiorców w wydzielonej sieci. Przez „pewne nabieranie mocy” należy rozumieć zdolność regulatora prędkości obrotowej do przyjęcia w warunkach pracy wyspowej/wydzielonej z różnymi połączeniami i przyłączeniami, skokowego obciążenia mocą $\Delta P = 0 \pm 0,1 P_n$ z częstotliwością zmieniającą się nie więcej niż o $\Delta f < \pm 1,0 \text{ Hz}$;

(4) zapewniać sprawne przechodzenie do pracy wydzielonej zarówno z nadmiarem jak i umiarkowanym niedoborem mocy generowanej w stosunku do mocy pobieranej przez wyspę w momencie wydzielania;

(5) struktura układu regulatora turbiny powinna umożliwiać automatyczną, zgodnie z postanowieniami pkt (2), oraz manualną zmianę trybów pracy regulatora turbiny;

(6) struktura regulacji powinna umożliwiać ustawienie w trybie operatorskim strefy martwej charakterystyki statycznej turbozespołu w zakresie nie mniejszym niż $\pm 500 \text{ mHz}$.

2.2.3.2.2.5. Wymagania techniczne dla jednostek wytwórczych w zakresie zdolności do pracy w układach wydzielonych:

(1) należy zapewnić takie działanie układów automatycznej regulacji (UAR) obciążenia jednostek wytwórczych, w których regulator mocy turbiny RP(PI) i paliwa do kotła RB(PI) podążające za mocą zadaną, aby jednostki mogły zostać w razie potrzeby odsprzegalone (zatrzymane) automatycznie lub przez operatora jednostki, po zapoczątkowaniu działania regulatora prędkości obrotowej RO(P);

(2) odciążanie/dociążanie turbiny przez regulator prędkości obrotowej RO(P) powinno być wspomagane - szczególnie po przejściu jednostki wytwórczej do pracy wydzielonej lub wyspowej - odpowiednio dopasowanym działaniem regulacji wydajności pary reagującej na dopływ paliwa do kotła (zapewnienie koordynacji pracy kotła i turbiny w trybie regulacji prędkości obrotowej typu P);

(3) przejściowe zmiany wielkości regulowanych na kotle, które się odznaczają na ogół dużymi inercjami, nie powinny wpływać ujemnie, w wypadku pojawienia się awarii w systemie, na działanie regulacji prędkości obrotowej turbiny, w postaci dodatkowego dla niej zakończenia;

(4) działanie regulatorów ciśnienia pary stacji obejściowych WP oraz SP/Np. powinno zostać tak zoptymalizowane, żeby odchyłki ciśnienia pary w czasie pracy stacji nie wpływały niekorzystnie na dokładność mocy utrzymywanej przez jednostkę wytwórczą;

(5) układy automatycznej regulacji turbiny i kotła oraz układy zabezpieczeń jednostek wytwórczych, powinny zapewnić opanowanie zrzutu z dowolnego poziomu do obciążenia potrzeb własnych jednostki wytwórczej;
(6) zapewnienie innych niż energia elektryczna mediów i struktur telekomunikacyjnych niezbędnych do uruchomienia jednostki wytwórczej ze stanu beznapieciowego, o ile taka konieczność wynika, z uzgodnionego z OSP planu działania w warunkach utraty połączenia z KSE lub całkowitego zaniku napięcia w tym systemie, o którym mowa w pkt 4.3.11.8;

(7) wymagania zapisane w pkt (2) - (5) nie dotyczą bloków gazowo-parowych;

(8) układy automatyki jednostek wytwórczych powinny zapewnić zdolność do opanowania zrzutu z dowolnego punktu pracy jednostki wytwórczej do dowolnego obciążenia wydzielonego ze szczególnym uwzględnieniem potrzeb własnymi jednostki wytwórczej, także w warunkach utraty połączenia z KSE lub zaniku napięcia w KSE:

(8.1) z identyfikacją położenia łączników w torze wyprowadzenia mocy, oraz

(8.2) bez identyfikacji położenia łączników w torze wyprowadzenia mocy (przy wykorzystaniu właściwości statycznego regulatora prędkości obrotowej).

2.2.3.3.2.2.6. Wymagania techniczne dla jednostek wytwórczych w zakresie zdolności do samostartu:

(1) jednostki wytwórcze powinny zachować zdolność do podania napięcia na wydzielony ciąg rozruchowy w ciągu 15 minut od wydania polecenia;

(2) jednostki wytwórcze powinny zachować zdolność do przeprowadzenia przynajmniej trzech kolejnych samostartów w ciągu 2 godzin;

(3) jednostki wytwórcze powinny posiadać odpowiednie zdolności wytwórcze wystarczające do uruchomienia innej elektrowni, przewidzianej do uruchomienia w planach odbudowy zasilania KSE.

2.2.3.3.2.2.7. Wymagania dla regulatorów napięć jednostek wytwórczych w zakresie zdolności do obrony i odbudowy zasilania KSE:

(1) jednostki wytwórcze powinny być dostosowane do regulowania napięcia w dozwolonym przedziale zmian oraz do kompensowania mocy biernej w dopuszczalnym obszarze pracy jednostki wytwórczej, zarówno podczas podania napięcia i ładowania linii, jak i przesyłania przez nią mocy rozruchowej potrzebnej do uruchomienia jednostki wytwórczej innej elektrowni;

(2) poprawne działanie regulacji napięcia z zachowaniem \(0,95 \leq U \leq 1,05 U_n\) podczas kolejnych skokowych naborów (przyrostów) mocy obciążenia sieci \(\Delta P \leq 0 \pm 0,05 P_n\);

(3) zapewnienie odpowiedniego poziomu mocy biernej pojemnościowej
i indukcyjnej w zakresie zgodnym z wykresem kołowym generatora;

(4) praca w trybie automatycznej regulacji napięcia w całym dopuszczalnym obszarze pracy w przedziale co najmniej od 80 do 110% napięcia znamionowego generatora.

2.2.3.2.2.8. Wytwórca, który posiada jednostki wytwórcze przystosowane do udziału w obronie i odbudowie zasilania KSE jest zobowiązany do utrzymania tych zdolności oraz bieżącej aktualizacji i dostarczania do OSP instrukcji utrzymania w pracy co najmniej jednej jednostki wytwórczej w warunkach utraty połączenia z KSE lub zaniku napięcia w KSE.

2.2.3.2.2.9. Układ synchronizatora jednostki wytwórczej powinien umożliwiać podanie napięcia na szyny rozdzielnicę w stacji elektroenergetycznej, do której jednostka ta jest przyłączona, będącej w stanie beznapięciowym.

2.2.3.2.3. Testy odbiorcze i sprawdzające zdolność jednostek wytwórczych do pracy w regulacji pierwotnej i wtórnej

2.2.3.2.3.1. Wytwórcy są obowiązani do przeprowadzania odbiorów technicznych obiektowych układów realizujących regulację pierwotną i wtórną w przypadkach:

(1) uruchamiania nowych obiektowych układów regulacji,

(2) modernizacji istniejących układów regulacji,

(3) zmian struktury lub algorytmu układów regulacji,

(4) zmian sprzętowych w układach regulacji,

(5) zmian zakresu regulacji lub zakresu mocy jednostki wytwórczej regulowanego obiektowymi układami regulacji, obejmującego szerszy zakres regulacyjny w stosunku do zakresu objętego wcześniejszym komisyjnym odbiorem układów regulacji (zmiana mocy osiągalnej lub minimalnego dopuszczalnego obciążenia technicznego),

(6) modernizacji jednostki wytwórczej, której efekty mogą mieć wpływ na jakość regulacji,

(7) zmiany w algorytmach lub w strukturach układów automatycznej realizacji BPP,

(8) zmiany procedury zadawania trybu pracy jednostki wytwórczej w ramach systemu SOWE,

(9) po przeprowadzeniu remontu kapitalnego.

2.2.3.2.3.2. Testy i pomiary przeprowadzane w przypadkach, o których mowa w pkt 2.2.3.2.3.1 przeprowadza niezależna firma ekspercka, uzgodniona z OSP, według programu uzgodnionego z OSP.

2.2.3.2.3.3. Wytwórcy, w celu przeprowadzania odbiorów technicznych obiektowych układów realizujących regulację pierwotną i wtórną zgłaszają je do odbioru technicznego OSP z 14-dniowym wyprzedzeniem. Wytwórca organizuje odbiór techniczny, przy współudziale przedstawicieli OSP.
2.2.3.3.4. W przypadku stwierdzenia przez OSP działania układów regulacji w sposób niezgodny z zasadami określonymi w protokołach odbiorów regulacji lub braku gotowości danej jednostki wytwórczej do regulacji, OSP może zarządzić wcześniejsze niż wynikające z pkt 2.2.3.3.2.3.1 testy sprawdzające z zachowaniem postanowień pkt 2.2.3.3.2.3.3.

2.2.3.3.5. Testy sprawdzające przeprowadzane w przypadkach, o których mowa w pkt 2.2.3.3.2.3.1 i 2.2.3.3.2.3.4 zostaną przeprowadzone na koszt wytwórcy.

2.2.3.3.6. W uzasadnionych przypadkach OSP zastrzega sobie prawo przeprowadzenia, innych niż wymienione w pkt 2.2.3.3.2.3 testów, mających za zadanie weryfikację spełnienia wymagań stawianych jednostkom wytwórczym. W tym przypadku testy prowadzone są na koszt operatora.

2.2.3.3.4. **Testy odbiorcze i sprawdzające zdolność jednostek wytwórczych do obrony i odbudowy zasilania KSE**

2.2.3.3.4.1. W ramach przeprowadzanych testów potwierdzających gotowość jednostek wytwórczych do obrony i odbudowy zasilania KSE wprowadzone zostają dwie kategorie testów:

(1) testy odbiorowe,

(2) okresowe testy sprawdzające i próby systemowe.

2.2.3.3.4.2. Celem przeprowadzanych testów odbiorowych jest sprawdzenie przystosowania jednostki wytwórczej do udziału w obronie i odbudowie zasilania w KSE.

2.2.3.3.4.3. Celem przeprowadzanych okresowych testów sprawdzających i prób systemowych jest potwierdzenie przystosowania elektrowni do udziału w obronie i odbudowie zasilania w KSE.

2.2.3.3.4.4. Testy sprawdzające i próby systemowe, dla elektrowni posiadających zdolność do samostartu, obejmują:

(1) test samostartu elektrowni polegający na samouruchomieniu jej jednostek wytwórczych oraz podaniu napięcia na wybraną szynę miejscowej rozdzielni aż do ustawilizowania napięcia i częstotliwości w granicach dopuszczalnych odchylen - test jest wykonywany na polecenie OSP co najmniej dwa razy w roku;

(2) sprawdzenie zdolności do regulacji częstotliwości w sieci elastycznej polegające na samostarcie jednostki wytwórczej i jej pracy równoległej z innymi jednostkami wytwórczymi elektrowni świadczącej usługę samostartu, przy zapewnieniu minimalnego obciążenia tych jednostek (potrzeby ogólne elektrowni i potrzeby własne jednostki wytwórczej, pompy, inne dostępne odbiory - test jest wykonywany na polecenie OSP co najmniej raz w roku, łącznie z testem określonym w pkt (1));
(3) próba samostartu elektrowni polegająca na samouruchomieniu, jak w pkt (1), losowo wybranych jednostek wytwórczych oraz podaniu napięcia na wydzieloną linię rozruchową do jednostki wytwórczej elektrowni aż do ustabilizowania napięcia na końcu tej linii w przylektrownianej rozdzielni - test jest wykonywany na polecenie OSP raz na 3 lata;

(4) próba samostartu elektrowni polegająca na samouruchomieniu losowo wybranych jednostek wytwórczych oraz podaniu napięcia i mocy rozruchowej na wydzieloną linię rozruchową do niesamostartującej elektrowni z uruchomieniem wytypowanej/wytypowanych jednostki wytwórczej elektrowni głównej ze stanu gorącego i jej/ich zsynchronizowaniu i pracy na wyspie z elektrownią samostartującą - test jest wykonywany na polecenie OSP nie rzadziej niż co 5 lat.

2.2.3.3.2.4.5. Testy sprawdzające i próby systemowe, dla elektrowni posiadających zdolność do pracy w układach wydzielonych, obejmują:

(1) próby zrzutów mocy na wybranych jednostkach wytwórczych kondensacyjnych oraz blokach gazowo-parowych o mocy osiągalnej 100 MW i wyższej z przejściem do PPW (pojedynczo w układzie jednomaszynowym z uaktywnieniem regulacji prędkości obrotowej typu PI oraz podwójnie w układzie dwu- lub wielomaszynowym z uaktywnieniem regulacji prędkości obrotowej typu P) i przyłączeniu do nich potrzeb ogólnych elektrowni. Test jest wykonywany na polecenie OSP nie rzadziej niż co 3 lata;

(2) próby zrzutów mocy na wybranych jednostkach wytwórczych z przejściem do PPW i przyłączeniu do nich potrzeb ogólnych elektrowni oraz podanie napięcia i mocy rozruchowej do uruchomienia sąsiedniej stojącej w rezerwie jednostki wytwórczej lub do jednostki/jednostek pobliskiej elektrowni. Test jest wykonywany na polecenie OSP nie rzadziej niż co 5 lat;

(3) próby zakresu pracy urządzeń potrzeb wlasnych jednostki wytwórczej przy obniżonych parametrach napięcia i częstotliwości, a także sprawdzenie zakresu regulacji zaczepowej na transformatorze potrzeb wlasnych. Test jest wykonywany na polecenie OSP nie rzadziej niż co 5 lat wraz z próbami opisanymi w pkt (2);

(4) próby podania napięcia na wydzielony system szyn w rozdzielni przylektrownianej. Test jest wykonywany na polecenie OSP nie rzadziej niż co 3 lata wraz z próbami opisanymi w pkt (1).

2.2.3.3.2.4.6. Testy odbiorowe zdolności jednostek wytwórczych kondensacyjnych oraz bloków gazowo - parowych o mocy osiągalnej 100 MW i wyższej do pracy na potrzeby własne przeprowadza się:

(1) na jednostkach wytwórczych nowych,

(2) na jednostkach wytwórczych po modernizacji,
(3) na polecenie OSP, po co najmniej dwukrotnym nieudanym przejściu jednostki wytwórczej, posiadającej taką zdolność, do pracy na potrzeby własne w warunkach awaryjnych.

Jednostkę wytwórczą uznaje się za zdolną do pracy na potrzeby własne jeśli podczas trzech kolejnych prób przejścia do pracy na potrzeby własne dwie z prób, w tym jedna o czasie trwania nie krótszym niż 120 minut a druga o czasie trwania nie krótszym niż 15 minut, zakończą się wynikiem pozytywnym, przy zachowaniu 3-minutowej nieinterwencji operatora bloku bezpośrednio po zrzucie mocy.

2.2.3.3.2.4.7. Zdolność bloku gazowo-parowego do pracy na potrzeby własne powinna być zapewniona co najmniej przez turbozespoł gazowy i nie może być ograniczana brakiem możliwości wyprowadzenia mocy z turbozespołu parowego. Dopuszcza się odstawienie turbozespołu parowego pod warunkiem utrzymania w pracy turbozespołu gazowego (przy zachowaniu niezakłóconej układów technologicznych wyprowadzenia spalin i odbioru pary z kotła odzyskowego).

2.2.3.3.2.4.8. Testy wymienione w pkt 2.2.3.3.2.4.1 są przeprowadzane z udziałem przedstawiciela OSP oraz niezależnej firmy eksperckiej.

2.2.3.3.2.4.9. W przypadku modernizacji lub zmiany stanu technicznego oraz organizacyjnego elektrowni posiadającej zdolność do samostartu lub zdolność do pracy w układach wydzielonych, OSP może zażądać przeprowadzenia testów sprawdzających, zgodnie z trybem i warunkami przewidzianymi dla tych testów.

2.2.3.3.2.4.10. OSP informuje wytwórcę o zamiarze przeprowadzenia testów z odpowiednim, nie krótszym niż 72 godziny, wyprzedzeniem umożliwiającym techniczno - organizacyjne przygotowanie testów, o których mowa w pkt 2.2.3.3.2.4.1.

2.2.3.3.2.4.11. W przypadku stwierdzenia w wyniku przeprowadzania testów, o których mowa w pkt 2.2.3.3.2.4.1, braku zdolności elektronnej do obrony i odbudowy zasilania w KSE, wytwórca jest zobowiązany do przeprowadzenia dodatkowego testu. Powtórny test traktuje się jako test odbiorowy. O terminie przeprowadzenia powtórnego testu wytwórca powiadamia OSP z co najmniej 72 godzinnym wyprzedzeniem.

2.2.3.3.2.4.12. Testy, o których mowa w pkt 2.2.3.3.2.4.1, przeprowadzane są na koszt wytwórcy.

2.2.3.3.2.4.13. OSP zastrzega sobie prawo do przeprowadzenia, innych niż wymienione w pkt 2.2.3.3.2.4.1 prób systemowych celem poprawy przystosowania KSE do działań w stanach awaryjnych. Zakres i szczegółowe cele tych prób określa OSP. Sposób pokrycia kosztów tych prób zostanie każdorazowo uzgodniony z uczestnikami tych prób.

2.2.3.3.2.4.14. OSP zastrzega sobie prawo przeprowadzenia, innych niż wymienione w pkt 2.2.3.3.2.4 testów, mających za zadanie weryfikację spełnienia wymagań stawianych jednostkom wytwórczym.
2.2.3.3.2.5. Testy odbiorcze i sprawdzające automatycznych układów grupowej regulacji napięć jednostek wtewórczych

2.2.3.3.2.5.1. Wytwórcy są obowiązani do przeprowadzania testów odbiorczych układów ARNE w następujących przypadkach:
 (1) uruchamiania nowych obiektowych układów regulacji,
 (2) modernizacji istniejących układów regulacji,
 (3) zmian struktury lub algorytmu układów regulacji,
 (4) zmian sprzętowych w układach regulacji,
 (5) zmiany zakresów regulacji układów ARNE.

2.2.3.3.2.5.2. Testy, o których mowa w pkt 2.2.3.3.2.5.1 przeprowadza niezależna firma ekspercka, uzgodyiona z OSP, według programu uzgodnionego z OSP.

2.2.3.3.2.5.3. Wytwórcy, w celu odbioru przez OSP układów ARNE zgłaszają je do odbioru technicznego z 14-dniowym wyprzedzeniem.

2.2.3.3.2.5.4. Wytwórca przy współudziale przedstawicieli OSP organizuje komisyjny odbiór techniczny sprawdzający spełnienie przez jednostkę wtewórczą wymagań regulacyjnych określonych przez OSP, przy zachowaniu pozostałych parametrów w granicach bezpiecznej pracy urządzeń.

2.2.3.3.2.5.5. OSP potwierdza przyjęcie do eksploatacji układu regulacji po spełnieniu wymagań, o których mowa w pkt 2.2.3.3.2.5.4.

2.2.3.3.2.5.6. W przypadku stwierdzenia przez OSP działania układów regulacji w sposób niezgodny z zapisami określonymi w protokołach odbiorów układów ARNE, OSP może zarządzić dodatkowe pomiary sprawdzające.

2.2.3.3.2.5.7. Testy odbiorcze i sprawdzające przeprowadzane w przypadkach, o których mowa w pkt 2.2.3.3.2.5.1 i 2.2.3.3.2.5.6, są przeprowadzane na koszt wtewórcy.

2.2.3.3.2.5.8. OSP zastrzega sobie prawo przeprowadzenia, innych niż wymienione w pkt 2.2.3.3.2.5.1 testów, mających za zadanie weryfikację spełnienia wymagań stawianych jednostkom wtewórczym.

2.2.3.3.3. Wymagania techniczne i warunki pracy farm wiatrowych przyłączonych do sieci zamkniętej

2.2.3.3.3.1. Zakres wymagań i warunków dla farm wiatrowych

2.2.3.3.3.1.1. Wymagania techniczne dla farm wiatrowych przyłączonych do sieci zamkniętej, dotyczą w szczególności:
 (1) regulacji mocy czynnej,
 (2) pracy w zależności od częstotliwości i napięcia,
 (3) załączania do pracy i wyłączania z sieci zamkniętej,
 (4) regulacji napięcia i mocy biernej,
 (5) pracy farm wiatrowych przy zakłóceniach w sieci zamkniętej,
(6) dotrzymywania standardów jakości energii elektrycznej,
(7) elektroenergetycznej automatyki zabezpieczeniowej,
(8) systemów monitorowania i telekomunikacji,
(9) testów sprawdzających.

2.2.3.3.1.2. Farmy wiatrowe przyłączane do sieci zamkniętej powinny być wyposażone w urządzenia o technologii umożliwiającej bezpieczną współpracę z KSE w różnych możliwych sytuacjach ruchowych.

2.2.3.3.1.3. Farma wiatrowa powinna być wyposażona w system sterowania i regulacji farmy wiatrowej w zakresie:
(1) mocy czynnej (system sterowania i regulacji mocy czynnej),
(2) napięcia i mocy biernej (system sterowania i regulacji mocy biernej i napięcia).

2.2.3.3.1.4. Szczegółowe wymagania dla każdej farmy wiatrowej są określone przez właściwego operatora systemu w warunkach przyłączenia do sieci, w zależności od mocy farmy wiatrowej, jej lokalizacji w sieci, sytuacji w systemie i wyników ekspertyzy wpływu przyłączenia farmy na system.

2.2.3.3.1.5. Podmiot posiadający farmę wiatrową, na co najmniej 2 miesiące przed terminem planowanego przyłączenia, opracowuje Instrukcję Współdziałania Służb Dyspozytorskich i uzgadnia ją z OSP. W instrukcji należy przedstawić w szczególności:
(1) szczegółowe procedury wykorzystania zdalnego sterowania oraz łączności głosowej,
(2) szczegółowe zasady postępowania w czasie wystąpienia awarii dla przypadków określonych w pkt 2.2.3.3.3.3.5.3 - 4,
(3) procedury załączania i wyłączania farmy wiatrowej,
(4) procedury oraz wymagania w zakresie przekazywania informacji o prognozie generacji mocy przez farmę wiatrową.

2.2.3.3.1.6. Podmiot posiadający farmę wiatrową jest zobowiązany do przedstawienia na podstawie algorytmu, sposobu:
(1) uruchamiania farmy wiatrowej do pracy,
(2) odstawiania z pracy farmy wiatrowej,
(3) redukcji mocy czynnej w funkcji częstotliwości,
(4) regulacji napięcia i mocy biernej.

2.2.3.3.2. **Zdalne sterowanie farmą wiatrową (interwencyjne)**

2.2.3.3.2.1. W celu zapewnienia możliwości wykorzystania farmy wiatrowej w procesie prowadzenia ruchu, wymaga się, aby farma wiatrowa była zdolna do zdalnego sterowania zgodnie ze standardami operatora systemu. W ramach systemu zdalnego sterowania z właściwego ośrodka dyspozycji mocy należy zapewnić
możliwość:
(1) zadawania maksymalnego, dopuszczalnego obciążenia mocą czynną (zmiany mocy czynnej),
(2) zmiany mocy biernej (w pełnym zakresie dopuszczalnych obciążen mocą bierną farmy wiatrowej),
(3) wyłączenia całkowitego farmy wiatrowej (oddziaływania na wyłącznik w torze wyprowadzenia mocy farmy wiatrowej).

W ramach systemu zdalnego sterowania należy zapewnić zmianę trybu regulacji farmy wiatrowej w czasie rzeczywistym (on-line).

2.2.3.3.2.2. Zadawanie wartości wielkości regulowanych powinno być możliwe w wielkościach bezwzględnych. Algorytm systemu sterowania i regulacji farmą wiatrową musi być dostosowany do realizacji tego wymagania.

2.2.3.3.2.3. Wymaganie zdalnego sterowania, stosuje się niezależnie od wymogu zapewnienia łączności dyspozytorskiej głosowej, dla podmiotów przyłączonych do sieci zamkniętej, zgodnie z pkt 2.2.3.4.7.

2.2.3.3.2.4. Właściwy operator systemu ma prawo do zmiany generacji mocy czynnej oraz biernej farmy wiatrowej w pełnym zakresie dopuszczalnych obciążen, łącznie z całkowitym wyłączeniem farmy wiatrowej, przy czym:

(1) w przypadku, gdy farma wiatrowa jest przyłączona do sieci przesyłowej powyżej powyższe funkcje powinny być realizowane w ramach systemu zdalnego sterowania z poziomu służb dyspozytorskich OSP - ODM;

(2) w przypadku, gdy farma wiatrowa jest przyłączona do sieci dystrybucyjnej wszystkie ww. funkcje zdalnego sterowania powinny być realizowane w ramach systemu zdalnego sterowania z poziomu służb dyspozytorskich OSD. OSP, przy wykorzystaniu infrastruktury telekomunikacyjnej (drogą telefoniczną), zastrzega sobie możliwość, za pośrednictwem służb dyspozytorskich OSD, interwencyjnej zmiany parametrów pracy farmy wiatrowej przyłączonej do sieci OSD. W przypadku, gdy zaniżenie mocy czynnej wystąpi w sytuacji braku zagrożenia bezpieczeństwa dostaw energii elektrycznej, rozliczenia finansowe z tego tytułu, każdorazowo będą dokonywane na podstawie odrębnej umowy.

2.2.3.3.3. System sterowania i regulacji mocy czynnej

2.2.3.3.3.1. Farma wiatrowa powinna być wyposażona w system sterowania i regulacji mocy czynnej umożliwiający:

(1) pracę farmy wiatrowej bez ograniczeń, odpowiednio do warunków wiatrowych;

Podczas pracy farmy wiatrowej bez ograniczeń, odpowiednio do warunków wiatrowych, a także w trakcie uruchomień i odstawień farmy wiatrowej, gradient średni zmiany mocy czynnej farmy wiatrowej nie może przekraczać 10% mocy znamionowej farmy wiatrowej na minutę. W przypadku przekroczenia maksymalnej dopuszczalnej prędkości wiatru proces
odstawiania z pracy poszczególnych turbin wiatrowych powinien odbywać się w jak najdłuższym czasie, przy zapewnieniu bezpieczeństwa urządzeń.

(2) ograniczanie maksymalnego dopuszczalnego obciążenia mocą czynną (wykorzystanie interwencyjne farmy wiatrowej);

Wartość zadanej, w trybie interwencyjnym przez operatora systemu, mocy czynnej powinna być utrzymywana z dokładnością co najmniej ±5% Pz (wartości zadanej), przy uwzględnieniu ograniczeń wynikających z warunków wiatrowych.

Prędkość redukcji mocy, powinna wynosić domyślnie 2% mocy znamionowej farmy wiatrowej na sekundę, w zakresie obciążenia farmy od 100% do 20% mocy znamionowej. W przypadku pracy farmy z obciążeniem poniżej 20% mocy znamionowej, dopuszcza się mniejszą prędkość redukcji mocy ale nie mniejszą niż 10% mocy znamionowej na minutę.

(3) automatyczną redukcję mocy czynnej, przy wzroście częstotliwości.

Przy wzroście częstotliwości w miejscu przyłączenia farmy wiatrowej, układ regulacji mocy czynnej farmy wiatrowej, powinien być zdolny do automatycznej redukcji mocy czynnej, zgodnie z ustawioną charakterystyką statyczną przedstawioną na Rysunku 2.2.3.3.3.3.1. W takim przypadku jako wartość domyślną prędkości redukcji mocy czynnej, należy przyjąć 5% mocy znamionowej farmy wiatrowej na sekundę dla całego zakresu obciążenia mocą czynną farmy wiatrowej.

Rysunek 2.2.3.3.3.3.1

Standardowa charakterystyka statyczna korekcji mocy farmy wiatrowej w funkcji wzrostu częstotliwości P = f(df).
Tabela 2.2.3.3.3.1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Jednostka</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>Zakres nastawczy parametru ustawialnego</th>
</tr>
</thead>
<tbody>
<tr>
<td>fn</td>
<td>Hz</td>
<td>Nominalna wartość częstotliwości sieci</td>
<td>50,0</td>
<td>nie dotyczy</td>
</tr>
<tr>
<td>fmin</td>
<td>Hz</td>
<td>Minimalna wartość częstotliwości w miejscu przyłączenia farmy wiatrowej, przy której następuje redukcja generowanej mocy czynnej</td>
<td>50,5</td>
<td>(50÷51) Hz</td>
</tr>
<tr>
<td>fmax</td>
<td>Hz</td>
<td>Maksymalna wartość częstotliwości w miejscu przyłączenia farmy wiatrowej, przy której generowana jest zerowa moc czynna</td>
<td>51,5</td>
<td>(51÷fgr) Hz</td>
</tr>
<tr>
<td>fgr</td>
<td>Hz</td>
<td>Maksymalna bezpieczna częstotliwość pracy farmy wiatrowej</td>
<td>52,5</td>
<td>-</td>
</tr>
<tr>
<td>Pmax</td>
<td>MW</td>
<td>Moc farmy wiatrowej z jaką farma pracowała w momencie wzrostu częstotliwości sieci do wartości 50,5 Hz</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s</td>
<td>%</td>
<td>Statyzm - względna zmiana częstotliwości do względnej zmiany mocy czynnej</td>
<td>-</td>
<td>Statyzm jest wartością wypadkową (nie ustawialną), zależną od doboru nastaw fmin i fmax oraz obciążenia farmy wiatrowej s = - [(ΔfΔf)/(ΔP/Pn)]</td>
</tr>
</tbody>
</table>

2.2.3.3.3.2. Zmniejszanie mocy wymagane przy zwyżce częstotliwości ponad 50,5 Hz powinno być realizowane w pierwszej kolejności poprzez możliwości regulacyjne poszczególnych turbin wiatrowych, a następnie poprzez wyłączenie poszczególnych pracujących turbin wiatrowych farmy wiatrowej.

2.2.3.3.3.3. Określona w pkt 2.2.3.3.3.1 (1) dopuszczalna prędkość zmian obciążenia nie ma zastosowania w przypadku odciążania farmy wiatrowej ze względu na wzrost częstotliwości powyżej 50,5 Hz, zgodnie z charakterystyką statyczną korekcji mocy farmy wiatrowej w funkcji wzrostu częstotliwości P = f(df) oraz w sytuacjach zakłóconych w systemie, w przypadku gdy OSP poleci szybkie odciążenie lub, jeśli jest to technicznie możliwe, dociążenie farmy wiatrowej. W takich przypadkach należy zapewnić prędkość redukcji mocy zgodnie z postanowieniami pkt 2.2.3.3.3.1 (2) - (3).
2.2.3.3.3.4. W celu zapewnienia właściwości dynamicznych dla całej farmy wiatrowej zaleca się aby każda pojedyncza turbina wiatrowa farmy wiatrowej była zdolna do redukcji mocy czynnej z prędkością nie mniejszą niż 5% \(P_n \) mocy znamionowej na sekundę w zakresie od 100% do 40% mocy generowanej.

2.2.3.3.4. **Praca farmy wiatrowej w zależności od częstotliwości i napięcia**

2.2.3.3.4.1. Farma wiatrowa powinna mieć możliwość pracy w następującym zakresie częstotliwości:

1. przy \(49,5 \leq f \leq 50,5 \) Hz farma wiatrowa musi mieć możliwość pracy trwałej z mocą znamionową,

2. przy \(48,5 \leq f < 49,5 \) Hz farma wiatrowa musi mieć możliwość pracy z mocą większą niż 90% \(P_n \) (przy uwzględnieniu warunków wiatrowych), przez co najmniej 30 minut,

3. przy \(48,0 \leq f < 48,5 \) Hz farma wiatrowa musi mieć możliwość pracy z mocą większą niż 85% \(P_n \) (przy uwzględnieniu warunków wiatrowych), przez co najmniej 20 minut,

4. przy \(47,5 \leq f < 48,0 \) Hz farma wiatrowa musi mieć możliwość pracy z mocą większą niż 80% \(P_n \) (przy uwzględnieniu warunków wiatrowych), przez co najmniej 10 minut,

5. przy \(50,5 < f \leq 51,5 \) Hz farma wiatrowa musi mieć możliwość trwalej pracy z mocą ograniczaną wraz ze wzrostem częstotliwości, do zera przy częstotliwości \(51,5 \) Hz, zgodnie z charakterystyką statyczną przedstawioną w pkt 2.2.3.3.3.1 (3),

6. przy \(f > 51,5 \) Hz farmę wiatrową należy wyłączyć z sieci zamkniętej, w ciągu maksymalnie 0,3 s, o ile właściwy operator systemu nie określi inaczej w warunkach przyłączenia do sieci.

2.2.3.3.4.2. Farma wiatrowa powinna pozostać w pracy synchronicznej w systemie elektroenergetycznym przy spadku napięcia do poziomu 0,8 \(U_n \), przy czym dopuszcza się obniżoną zdolność do generacji mocy czynnej.

2.2.3.3.4.3. W zależności od miejsca przyłączenia i mocy przyłączeniowej farmy wiatrowej oraz skali rozwoju energetyki wiatrowej w kraju, operator systemu może w warunkach przyłączenia do sieci określić dodatkowe wymagania.

2.2.3.3.5. **Zalaczanie i wyłączanie farm wiatrowych z sieci zamkniętej**

2.2.3.3.5.1. Sygnał informujący o stanie turbin wiatrowych oraz lokalne pomiary częstotliwości i napięcia sieci uwzględniane są w algorytmach załączania farmy wiatrowej do pracy, uzgadnianych w umowie o przyłączenie.

2.2.3.3.5.2. Algorytm uruchomienia farmy wiatrowej musi zawierać kontrolę warunków napięciowych i częstotliwości w miejscu przyłączenia do sieci.

2.2.3.3.5.3. Jeżeli w skutek awarii został wyłączony wyłącznik w torze wyprowadzenia mocy, służby ruchowe farmy wiatrowej mają obowiązek z 15 - minutowym wyprzedzeniem poinformować właściwego operatora systemu, o planowanym uruchomieniu farmy wiatrowej.
2.2.3.3.5.4. Po wyłączeniu awaryjnym przez automatykę zabezpieczeniową farmy wiatrowej lub operatora systemu, ponowne załączenie do pracy, może odbyć się tylko za zgodą operatora systemu.

2.2.3.3.5.5. Farmy wiatrowe, które nie mają zaimplementowanej charakterystyki statycznej redukcji mocy czynnej w funkcji częstotliwości, zgodnie z wymaganiem w pkt 2.2.3.3.3.1 (3), nie mogą po automatycznym wyłączeniu od zadziałania zabezpieczenia od zwyki częstotliwości, samodzielnie załączać się do pracy w systemie elektroenergetycznym i obciążać, w przypadku gdy częstotliwość w miejscu przyłączenia farmy wiatrowej obniży się poniżej f \(\leq 51,5 \) Hz. Farmy wiatrowe z aktywną charakterystyką statyczną redukcji mocy czynnej w funkcji częstotliwości, mogą załączać się do pracy w systemie elektroenergetycznym, jeżeli częstotliwość w miejscu przyłączenia farmy wiatrowej spadnie poniżej 51,5 Hz, przy czym wymaga się utrzymywania poziomu generacji mocy czynnej, zgodnie z zaimplementowaną charakterystyką statyczną.

2.2.3.3.6. **System sterownia i regulacji napięcia i mocy biernej**

2.2.3.3.6.1. Wyposażenie farmy wiatrowej musi być tak dobrane aby zapewnić utrzymanie, określonych w warunkach przyłączenia, warunków napięciowych w miejscu przyłączenia farmy wiatrowej i stabilność współpracy z KSE.

2.2.3.3.6.2. Farma wiatrowa musi posiadać zdolność do generacji mocy biernej, w wielkości wynikającej z wymaganego, dla mocy osiągalnej (\(P_{os} \)), współczynnika mocy w miejscu przyłączenia farmy wiatrowej w granicach od \(\cos \varphi = 0,95 \) (o charakterze indukcyjnym) do \(\cos \varphi = 0,95 \) (o charakterze pojemnościowym). Przy obciążeniu mocą czynną niższą od \(P_{os} \) należy udostępnić całą dostępną moc bierną w zakresie poza \(\cos \varphi = \pm 0,95 \), zgodnie z możliwościami technicznymi farmy wiatrowej.

Regulacja napięcia i mocy biernej powinna być zapewniona w pełnym zakresie dopuszczalnych obciążen mocą bierną farmy wiatrowej.

2.2.3.3.6.3. System sterownia i regulacji napięcia i mocy biernej farmy wiatrowej powinien posiadać zdolność do pracy autonomicznej oraz opcjonalnie do pracy skoordynowanej z nadrzędnym układem regulacji napięcia i mocy biernej zainstalowanym w stacji elektroenergetycznej.

2.2.3.3.6.4. **Regulacja napięcia i mocy biernej w trybie autonomicznym**

System sterownia i regulacji napięcia i mocy biernej farmy wiatrowej, w trybie autonomicznym, powinien posiadać zdolność do niezależnej pracy w następujących trybach regulacji:

1. (1) tryb regulacji mocy biernej (w miejscu przyłączenia),
2. (2) tryb regulacji napięcia (w miejscu przyłączenia), zgodnie z zadaną charakterystyką statyczną (Rysunek 2.2.3.3.6.4).
Rysunek 2.2.3.3.6.4
Poglądowa charakterystyka statyczna regulacji napięcia farmy wiatrowej przyłączonej do sieci 110 kV lub NN.

Tabela 2.2.3.3.6.4

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Jednostka</th>
<th>Opis</th>
<th>Zakres nastawczy parametru ustawialnego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q max pob</td>
<td>Mvar</td>
<td>Maksymalna dopuszczalna wartość poboru mocy biernej przez farmę wiatrową, przy danym poziomie generacji mocy czynnej.</td>
<td>nie dotyczy</td>
</tr>
<tr>
<td>Q max gen</td>
<td>Mvar</td>
<td>Maksymalna dopuszczalna wartość generacji mocy biernej przez farmę wiatrową, przy danym poziomie generacji mocy czynnej.</td>
<td>nie dotyczy</td>
</tr>
<tr>
<td>U min</td>
<td>kV</td>
<td>Minimalna wartość napięcia regulowanego w miejscu przyłączenia farmy wiatrowej, przy której generowana jest maksymalna moc bierna.</td>
<td>(99÷110) kV (200÷220) kV (360÷400) kV</td>
</tr>
<tr>
<td>U max</td>
<td>kV</td>
<td>Maksymalna wartość napięcia regulowanego w miejscu przyłączenia farmy wiatrowej, przy której pobierana jest maksymalna moc bierna.</td>
<td>(110÷123) kV (220÷245) kV (400÷420) kV</td>
</tr>
</tbody>
</table>
Uprog1 kV Wartość napięcia regulowanego w miejscu przyłączenia farmy wiatrowej, poniżej której generowana jest moc bierna.

(99÷110) kV
(200÷220) kV
(360÷400) kV

Uprog2 kV Wartość napięcia regulowanego w miejscu przyłączenia farmy wiatrowej, powyżej której pobierana jest moc bierna.

(110÷123) kV
(220÷245) kV
(400÷420) kV

Uz kV Wartość zadana napięcia sieci w miejscu przyłączenia farmy wiatrowej.

(99÷120) kV
(200÷245) kV
(360÷420) kV

Należy zapewnić parametryzację charakterystyki zgodnie z zakresami nastawczymi parametrów ustawialnych określonymi w Tabeli 2.2.3.3.3.6.4. Parametryzacja odbywa się indywidualnie dla każdej przyłączanej farmy wiatrowej w zależności od wielkości farmy wiatrowej i miejsca jej przyłączenia w systemie elektroenergetycznym.

2.2.3.3.3.6.5. **Regulacja napięcia i mocy biernej w trybie skoordynowanym z nadrzędnym układem regulacji napięcia i mocy biernej w stacji elektroenergetycznej**

System sterowania i regulacji napięcia i mocy biernej farmy wiatrowej powinien posiadać zdolność do pracy skoordynowanej z zainstalowanym nadrzędnym układem regulacji napięcia i mocy biernej w stacji elektroenergetycznej.

W ramach zapewnienia zdolności do współpracy z nadrzędnym układem regulacji napięcia i mocy biernej należy zapewnić:

1. możliwość przyjmowania do realizacji przez system sterowania i regulacji napięcia i mocy biernej farmy wiatrowej, wartości zadanym mocy biernej;
2. odpowiedni kanał komunikacyjny dedykowany dla nadrzędnego układu regulacji napięcia i mocy biernej.

2.2.3.3.7. **Praca farm wiatrowych przy zakłóceniach w sieci zamkniętej**

2.2.3.3.7.1. Farma wiatrowa powinna być przystosowana do utrzymania się w pracy w przypadku wystąpienia zawału w sieci, skutkujących obniżeniem napięcia w miejscu przyłączenia farmy wiatrowej. Krzywa przedstawiona na Rysunku 2.2.3.3.3.7.1 przedstawia obszar, powyżej którego turbiny wiatrowe farmy wiatrowej nie mogą być wyłączane.
Rysunek 2.2.3.3.3.7.1
Charakterystyka wymaganego zakresu pracy farmy wiatrowej w przypadku wystąpienia zakłóceń w sieci

2.2.3.3.3.7.2. Operator systemu może wymagać by farma wiatrowa podczas zakłóceń w systemie elektroenergetycznym produkowała możliwie dużą, w ramach ograniczeń technicznych, moc bierną. Wymaganie to określa operator systemu w warunkach przyłączenia do sieci.

2.2.3.3.3.7.3. Szczegółowe wymagania w zakresie pracy farmy wiatrowej przy zakłóceniami w sieci operator systemu określa w warunkach przyłączenia do sieci, biorąc pod uwagę rodzaj zastosowanych turbin wiatrowych, moc farmy wiatrowej, jej położenie w sieci, koncentrację generacji wiatrowej w KSE i wyniki ekspertyzy wpływu przyłączenia farmy na KSE.

2.2.3.3.3.7.4. Podczas zakłóceń skutkujących zmianami napięcia, farma wiatrowa nie może utracić zdolności regulacji mocy biernej i musi aktywnie oddziaływać w kierunku podtrzymywania napięcia. W przypadku obniżenia się napięcia w miejscu przyłączenia farmy wiatrowej poniżej wartości zadanej, farma wiatrowa nie może pobierać mocy biernej.

2.2.3.3.3.7.5. Farma wiatrowa powinna mieć zainstalowane rejestratory przebiegów zakłóconej, zgodnie z wymaganiami pkt 2.2.3.7.27. Rejestratory powinny zapewniać rejestrację przebiegów przez 10 s przed zakłóceniem i 60 s po zakłóceniu.

2.2.3.3.3.8. **Dotrzymanie standardów jakości energii elektrycznej**

2.2.3.3.3.8.1. Farma wiatrowa nie powinna powodować nagłych zmian i skoków napięcia przekraczających 3%. W przypadku, gdy zakłócenia napięcia spowodowane pracą farmy wiatrowej mają charakter powtarzający się, zakres jednorazowej szybkiej zmiany wartości skutecznej napięcia nie może przekraczać 2,5% dla częstotliwości do 10 zakłóceń na godzinę i 1,5% dla częstotliwości do 100 zakłóceń na godzinę. Wymagania powyższe dotyczą również przypadków rozruchu i wyłączeń turbin wiatrowych.
2.2.3.3.3.8.2. Udział farmy wiatrowej przyłączonej do sieci zamkniętej w całkowitych wahaniach napięcia w miejscu jej przyłączenia, mierzone przyrostem wartości krótkookresowego (Pₚₜ) i długookresowego (Pₚₜ) współczynnika migotania światła ponad wartość tła nie powinien przekroczyć:

(1) Pₚₜ < 0,35 dla koordynowanej sieci 110 kV i Pₚₜ < 0,30 dla sieci o napięciu znamionowym równym 220 kV lub wyższym;

(2) Pₚₜ < 0,25 dla koordynowanej sieci 110 kV i Pₚₜ < 0,20 dla sieci o napięciu znamionowym równym 220 kV lub wyższym.

2.2.3.3.8.3. Farmy wiatrowe, przyłączone do sieci o napięciu znamionowym równym 220 kV lub wyższym, nie powinny powodować w miejscu przyłączenia obecności harmonicznych napięcia (o rzędach od 2 do 50) o wartościach większych niż 1,0% (w odniesieniu do harmonicznej podstawowej). Całkowity współczynnik odkształcenia napięcia THD w miejscu przyłączenia do sieci powinien być mniejszy od 1,5%.

2.2.3.3.8.4. Farmy wiatrowe, przyłączone do koordynowanej sieci 110 kV, nie powinny powodować w miejscu przyłączenia obecności harmonicznych napięcia (o rzędach od 2 do 50) o wartościach większych niż 1,5% (w odniesieniu do harmonicznej podstawowej). Całkowity współczynnik odkształcenia napięcia THD w miejscu przyłączenia do sieci powinien być mniejszy od 2,5%.

2.2.3.3.8.5. Podane powyżej wartości współczynników jakości energii powinny być spełnione w okresie tygodnia z prawdopodobieństwem 99%.

2.2.3.3.8.6. Farmy wiatrowe o mocy znamionowej równej 50 MW lub większej, przyłączone do jednego ciągu linii, powinny być wyposażone w system pomiaru i rejestracji parametrów jakości energii (pomiar wartości skutecznej napięcia i prądu, wskaźników wahań napięcia i harmonicznych napięcia i prądu w klasie pomiarowej A), oraz system teletransmisji danych do właściwego operatora systemu.

2.2.3.3.8.7. Współczynnik zakłóceń harmonicznymi telefonii THFF dla miejsc przyłączenia farm wiatrowych do sieci zamkniętej powinien być poniżej 1%.

2.2.3.3.8.8. Ze względu na ochronę urządzeń telekomunikacyjnych poziom zakłóceń powodowany przez farmę wiatrową w miejscu przyłączenia do sieci zamkniętej powinien spełniać wymagania odpowiednich przepisów telekomunikacyjnych.

2.2.3.3.8.9. Farma wiatrowa w przypadku niedotrzymania standardów jakości energii określonych w pkt 2.2.3.3.3.8.1 - 8 może zostać wyłączona, na polecenie operatora systemu, do czasu usunięcia nieprawidłowości.

2.2.3.3.9. **Elektroenergetyczna automatyka zabezpieczeniowa**

2.2.3.3.9.1. Podmiot posiadający farmę wiatrową ponosi odpowiedzialność za projekt i instalację zabezpieczeń chroniących tę farmę przed skutkami prądów zwarcowych, napięć powrotnych po wyłączeniu zwarc w systemie elektroenergetycznym, pracy asynchronicznej tej farmy i innymi oddziaływaniams zakłóceń systemowych.
2.2.3.3.3.9.2. Nastawienia zabezpieczeń farmy wiatrowej muszą być skoordynowane z nastawami zabezpieczeń zainstalowanych w sieci zamkniętej.

2.2.3.3.9.3. Nastawienia zabezpieczeń farmy wiatrowej muszą zapewniać selektywność współdziałania z zabezpieczeniami sieci zamkniętej dla zwać w tej sieci i na tej farmie.

2.2.3.3.9.4. Zwarcia wewnątrz farmy wiatrowej powinny być likwidowane selektywnie i powodować możliwie jak najmniejszy ubytek mocy tej farmy.

2.2.3.3.9.5. Na etapie opracowywania projektu farmy wiatrowej należy przeprowadzić i uzgodnić z właściwym operatorem systemu analizę zabezpieczeń obejmującą sprawdzenie:

1. kompletności zabezpieczeń,
2. poprawności nastaw na poszczególnych turbinach wiatrowych i w rozdzielni farmy wiatrowej,
3. koordynacji z zabezpieczeniami systemu dystrybucyjnego lub przesyłowego.

Wyniki analiz należy przekazać właściwemu operatorowi systemu. Szczegółowe wymagania OSP dla układów elektroenergetycznej automatyki zabezpieczeniowej określone są w pkt 2.2.3.7.

2.2.3.3.10. Monitorowanie i komunikacja farm wiatrowych z OSP

2.2.3.3.10.1. Podmiot posiadający farmę wiatrową przyłączoną do sieci przesyłowej lub sieci dystrybucyjnej ma obowiązek zapewnić dostępność do sygnałów pomiarowych i parametrów rejestrowanych, na warunkach uzgodnionych z operatorem systemu, do którego sieci przyłączona jest farma wiatrowa.

Wytwórcza ten ma ponadto obowiązek przekazywać dane pomiarowe do systemu SCADA OSP.

2.2.3.3.10.2. Minimalny zakres udostępnianych operatorowi systemu pomiarów wielkości analoowych z farmy wiatrowej obejmuje pomiary w trybie czasu rzeczywistego (on-line):

1. moc czynna po stronie wyższego napięcia transformatora/ów NN/WN lub NN/SN lub WN/SN farmy wiatrowej,
2. moc bierna po stronie wyższego napięcia transformatora/ów NN/WN lub NN/SN lub WN/SN farmy wiatrowej,
3. moc czynna po stronie niższego napięcia transformatora/ów NN/WN lub NN/SN lub WN/SN farmy wiatrowej,
4. moc bierna po stronie niższego napięcia transformatora/ów NN/WN lub NN/SN lub WN/SN farmy wiatrowej,
5. napięcia międzyfazowe U_{12} po stronie wyższego napięcia transformatora/ów NN/WN lub NN/SN lub WN/SN farmy wiatrowej,
6. napięcia międzyfazowe U_{12} po stronie niższego napięcia transformatora/ów NN/WN lub NN/SN lub WN/SN farmy wiatrowej,
(7) numer zaczepu transformatora/ów NN/WN lub NN/SN lub WN/SN farmy wiatrowej,

(8) chwilowa prędkość wiatru dla każdej wyodrębnionej terytorialnie części farmy wiatrowej [m/s],

(9) kierunek wiatru (w stopniach wg konwencji róży wiatrów, gdzie kierunek 0 stopni wyznacza północ natomiast 90 stopni wyznacza wschód),

(10) temperatura [°C],

(11) ciśnienie bezwzględne [Pa],

(12) liczba aktualnie pracujących turbin wiatrowych,

(13) liczba turbin wiatrowych gotowych do pracy.

2.2.3.3.10.3. Minimalny zakres udostępnianych operatorowi systemu danych dwustanowych obejmuje:

(1) stan wyłącznika/ów po stronie niższego napięcia transformatora/ów NN/WN lub NN/SN lub WN/SN farmy wiatrowej - dwubitowo;

(2) stan wyłącznika/ów i wszystkich odłączników po stronie wyższego napięcia transformatora/ów NN/WN lub NN/SN lub WN/SN - dwubitowo;

(3) stan wyłączników baterii kondensatorów kompensacyjnych (opcjonalnie, jeśli są zainstalowane).

2.2.3.3.10.4. W indywidualnych przypadkach OSP zastrzega sobie prawo do wskazania dodatkowych pomiarów oraz danych dwustanowych poza wymienionymi w pkt 2.2.3.3.10.2 - 3, które powinny być przekazywane do systemu SCADA OSP.

2.2.3.3.10.5. Jako standardowe wyposażenie farmy wiatrowej uznaje się system monitorowania w czasie rzeczywistym stanu i parametrów pracy, z zapewnieniem przesyłu danych do właściwego operatora systemu.

2.2.3.3.10.6. Podmiot posiadający farmę wiatrową przyłączoną do sieci przesyłowej zapewnia dostarczanie OSP za pośrednictwem właściwej spółki obszarowej OSP, prognozy generacji mocy farmy wiatrowej.

Podmiot posiadający farmę wiatrową przyłączoną do sieci dystrybucyjnej zapewnia dostarczanie, za pośrednictwem OSD, do właściwej spółki obszarowej OSP, prognozy generacji mocy farmy wiatrowej.

W przypadku bilansowania farmy wiatrowej poprzez JGzw, należy spełnić wymagania IRiESP, w szczególności w zakresie prognozowania oraz dostępu do właściwych systemów teleinformatycznych w zakresie planowania i prowadzenia ruchu.

2.2.3.3.10.7. Na wniosek OSP podmiot posiadający farmę wiatrową ma obowiązek dostarczyć dane podstawowe w zakresie wymienionym w pkt 2.1.1.3.5 oraz aktualne parametry wyposażenia farmy wiatrowej (urządzeń podstawowych i
układów regulacji) niezbędne do przeprowadzania analiz systemowych. Przed uruchomieniem farmy wiatrowej są to dane producentów urządzeń.

2.2.3.3.3.10.8. Operator systemu określa w warunkach przyłączenia do sieci zakres danych technicznych dla danej farmy wiatrowej, które są niezbędne do prowadzenia i planowania ruchu KSE.

2.2.3.3.3.10.9. Parametry techniczne systemu telekomunikacji farmy wiatrowej właściwy operator systemu określa w warunkach przyłączenia do sieci.

2.2.3.3.3.11. Weryfikacja spełnienia wymagań

2.2.3.3.3.11.1. Operator systemu ma prawo do kontroli realizacji warunków przyłączenia i może żądać udostępnienia przez podmiot posiadający farmę wiatrową dokumentacji stwierdzającej spełnienie przez farmę wiatrową wymagań określonych w IRiESP i w warunkach przyłączenia do sieci. W szczególności przedmiotowa dokumentacja powinna zawierać wyniki pomiarów i analiz, na akceptowanych przez właściwego operatora systemu modelach matematycznych, konieczne dla oceny wpływu farmy wiatrowej na jakość energii elektrycznej oraz pokazujące reakcję farmy wiatrowej na zakłócenia sieciowe.

2.2.3.3.3.11.2. Podmiot posiadający farmę wiatrową jest zobowiązany do przeprowadzenia testów sprawdzających parametry techniczno-ruchowe farmy, celem potwierdzenia spełnienia przez farmę wiatrową wymagań technicznych, w tym parametrów ruchowych farmy wiatrowej, określonych w warunkach przyłączenia do sieci i w IRiESP. Powyższe testy należy rozpocząć niezwłocznie po przyłączeniu farmy wiatrowej do KSE, jednak nie później niż w terminie 30 dni roboczych. Testy należy zakończyć przed upływem roku licząc od daty przyłączenia farmy wiatrowej. Zakres i sposób przeprowadzenia testów farmy wiatrowej uzgadniany jest w ramach umowy o przyłączenie.

2.2.3.3.3.11.3. Podmiot posiadający farmę wiatrową, na co najmniej 2 miesiące przed terminem przyłączenia farmy wiatrowej, przedstawia właściwemu operatorowi systemu, szczegółowy program testów, instrukcję układów regulacji oraz inne niezbędne dokumenty. Proces uzgodnień szczegółowego programu testów powinien być zakończony w terminie 30 dni roboczych przed rozpoczęciem testów sprawdzających.

2.2.3.3.3.11.4. W testach sprawdzających powinna uczestniczyć niezależna firma ekspercka, uzgodniona pomiędzy OSP i podmiotem posiadającym farmę wiatrową. Możliwe jest wytypowanie dla danego obszaru merytorycznego (określonej grupy testów sprawdzających) odrębnej, niezależnej firmy eksperckiej, o ile takie rozwiązanie zostanie uzgodnione pomiędzy stronami. Firma ekspercka nie powinna być zangażowana w jakiejkolwiek pracę przy budowie farmy wiatrowej, będące przedmiotem przeprowadzenia obiektowych testów sprawdzających.

2.2.3.3.3.11.5. Weryfikacja spełniania wymagań przez farmę wiatrową będzie przeprowadzana na podstawie:
(1) dostarczonych certyfikatów, oświadczeń oraz dokumentacji technicznych,
(2) obiektowych testów sprawdzających parametry techniczno - ruchowe,
(3) monitorowania pracy farmy wiatrowej,
(4) pomiarów wpływu farmy wiatrowej na jakość energii elektrycznej.

2.2.3.3.11.6. Testy sprawdzające będą przeprowadzane pod nadzorem operatora systemu, który określił warunki przyłączenia.

2.2.3.3.11.7. Testy sprawdzające parametry techniczno - ruchowe dotyczą powinny w szczególności:

(1) sprawdzenia dostępności pomiarów i sygnalizacji w systemie SCADA operatora systemu,
(2) sprawdzenia zdalnego sterowania farmą wiatrową z poziomu właściwego ośrodka dyspozycji mocy,
(3) charakterystyki mocy farmy wiatrowej w funkcji prędkości wiatru,
(4) uruchamiania farmy wiatrowej,
(5) odstawiania farmy wiatrowej,
(6) działania systemu sterowania i regulacji mocy czynnej,
(7) działania systemu sterowania i regulacji napięcia i mocy biernej.

2.2.3.3.11.8. Operator systemu wydaje zgodę na pierwsze uruchomienie farmy wiatrowej i przeprowadzenie testów.

2.2.3.3.11.9. Podstawą do oceny końcowej będzie przygotowany przez niezależną firmę ekspercką szczegółowy raport z przeprowadzonych testów sprawdzających parametry techniczno - ruchowe, który powinien być dostarczony właściwemu operatorowi systemu w terminie do 6 tygodni po ich zakończeniu.

2.2.3.4. **Wymagania techniczne dla systemów telekomunikacyjnych**

2.2.3.4.1. Wymagania techniczne dla systemów telekomunikacji dotyczą obiektów sieci zamkniętej oraz urządzeń, instalacji i sieci podmiotów przyłączonych do sieci zamkniętej. Sieci telekomunikacyjne OSP i OSD są sieciami niezależnymi i połączonymi ze sobą za pomocą punktów styków.

2.2.3.4.2. Obiekty sieci zamkniętej oraz urządzenia, instalacje lub sieci podmiotów przyłączonych i przyłączanych do sieci zamkniętej powinny być wyposażone w urządzenia telekomunikacji niezbędne do:

(1) realizacji łączności dyspozytorskiej,
(2) nadawania i odbioru danych niezbędnych do kierowania ruchem sieci zamkniętej tj. sygnałów z/do układów telemechaniki w zakresie telesygnalizacji, telemetrii i telesterowania oraz teleregulacji jednostek wytwórczych,
transmisji sygnałów układów telezabezpieczeń i teleautomatyk,
przesyłu danych pomiarowych do celów rozliczeniowych,
przesyłu informacji techniczno - handlowych,
zapewnienia łączności ruchowej wewnętrz obiektów, w zakresie uzależnionym od potrzeb obiektu,
zapewnienia łączności ze służbami publicznymi.

2.2.3.4.3. Kanaly telekomunikacyjne niezbędne do realizacji ww. celów powinny zapewniać transmisję danych z określoną przez OSP szybkością transmisji oraz powinny posiadać fizycznie niezależną rezerwację łącza do węzłów telekomunikacyjnych OSP.

2.2.3.4.4. Urządzenia telekomunikacyjne powinny posiadać zasilanie ze źródeł odpornych na awarie zasilania podstawowego zapewniające ciągłość pracy w okresie co najmniej 8 godzin od zaniku zasilania podstawowego i zapewniać odpowiednio czasy podtrzymania pracy systemów telekomunikacyjnych na ciągach restytucyjnych.

2.2.3.4.5. Urządzenia technologiczne systemów telekomunikacji powinny posiadać dopuszczenie do instalowania i użytkowania na terytorium Rzeczypospolitej Polskiej oraz certyfikaty jakościowe w zakresie stosowania urządzeń i instalacji w obiektach elektroenergetycznych. Spełnienie kryteriów i wymogów w nich zawartych gwarantuje poprawność działania stosowanej sieci telekomunikacyjnej oraz umożliwia przedłożenie przez producentów sprzętu deklaracji zgodności wykonania i oznakowania z obowiązującymi normami.

2.2.3.4.6. Dla nowych elementów systemu telekomunikacyjnego przekazywanych do eksploatacji OSP muszą być dodatkowo dostarczone następujące dokumenty:

(1) protokoły odbiorcze urządzeń, sporządzone przez komisję odbiorczą inwestora,
(2) protokoły pomiarowe traktów światłowodowych zrealizowanych na liniach wysokiego napięcia, wykonane bądź autoryzowane przez uprawnione firmy,
(3) kompletną dokumentację powykonawczą, w tym protokoły z badań pomontażowych i uruchomieniowych, sprawdzoną przez inspektora nadzoru technicznego danej inwestycji i zaakceptowaną przez OSP.

2.2.3.4.7. Obiekty sieci zamkniętej oraz sieci podmiotów przyłączonych do sieci zamkniętej powinny być wyposażone w następujące systemy łączności dyspozytorskie:

(1) system podstawowy i rezerwowy łączności dyspozytorskiej z hierarchicznie odpowiednimi centrami dyspozytorskimi,
(2) system łączności z sąsiadującymi obiektami oraz na ciągach restytucyjnych, z wymaganą jego rezerwacją sprzęłową dla ważniejszych obiektów, w zależności od potrzeb.
2.2.3.4.8. Do budowy podstawowego systemu łączności dyspozytorskiej jest wykorzystywana dedykowana centrala telefoniczna zainstalowana w obiekcie elektroenergetycznym. W uzasadnionych przypadkach oraz dla obiektów o górnym napięciu 110 kV dopuszcza się stosowanie telefonów wyniszczenych z innych central użytkowników systemu.

2.2.3.4.9. Rezerwowy system łączności dyspozytorskiej może wykorzystywać sieci oraz struktury teletransmisyjne i komutacyjne innych operatorów telekomunikacyjnych.

2.2.3.4.10. Wszystkie rozmowy dyspozytorskie prowadzone z wykorzystaniem podstawowego lub rezerwowego systemu łączności dyspozytorskiej podlegają rejestracji, jednocześnie w każdym centrum dyspozytorskim prowadzącym rozmowę. Wymagany okres przechowywania zarejestrowanych informacji nie może być krótszy niż 1 rok.

2.2.3.4.11. OSP ustala wymagania dla elementów sieci telekomunikacyjnej systemu łączności dyspozytorskiej w obiektach sieci przesyłowej w oparciu o przyjęte w OSP standardy.

2.2.3.4.12. Obiekty sieci zamkniętej oraz siedziby służb dyspozytorskich OSP i podmiotów przyłączonych do sieci zamkniętej powinny być wyposażone w urządzenia transmisji danych umożliwiające przesył informacji niezbędnych do zarządzania i kierowania ruchem urządzeń i podsystemów zainstalowanych w obiektach sieciowych w zakresie telesygnalizacji, telemetrii i telesterowania, monitorowania i nadzoru, a w szczególności:

1. w urządzeniach telesygnalizacji umożliwiające przekazywanie informacji niezbędnych do odwzorowania topologii nadzorowanego obiektu elektroenergetycznego,
2. w urządzeniach telemetrii umożliwiające przekazywanie chwilowych wartości pomiarów wielkości niezbędnych do odwzorowania parametrów nadzorowanego obiektu elektroenergetycznego,
3. w urządzeniach telesterowania umożliwiające zdalne dokonywanie czynności łącznościowych i regulacyjnych.

2.2.3.4.13. Siedziby służb dyspozytorskich operatorów systemu powinny być wyposażone w systemy teleinformatyczne służące do wymiany danych dotyczących ruchu sieci. Systemy te powinny zapewniać wymianę danych w protokole ICCP.

2.2.3.4.14. Urządzenia telekomunikacyjne stosowane do przesyłu danych pomiarowych energii elektrycznej do systemów OSP powinny umożliwiać transmisję wielkości mierzonych przez układy pomiarowe z minimalną prędkością 9 600 Bd poprzez wykorzystanie:

1. systemów komutacyjnych realizujących łączność bezpośrednią (łącza stałe analogowe lub cyfrowe z wykorzystaniem traktów światłowodowych) lub radiową poprzez dołączenie portu komunikacyjnego systemu automatycznej rejestracji danych do wybranej lokalnej lub zdalnej centrali telefonicznej,
(2) kanałów transmisji danych w telekomunikacyjnej sieci bazowej energetyki lub kanałów transmisji danych w sieciach innych operatorów telekomunikacyjnych poprzez stałe powiązanie portu komunikacyjnego systemu automatycznej rejestracji danych z portem komunikacyjnym systemu zdalnej akwizycji danych pomiarowych,

(3) urządzeń i elementów sieci informatycznych OSP realizujących emulowane powiązanie portów komunikacyjnych systemu automatycznej rejestracji danych i systemu zdalnego odczytu danych pomiarowych.

2.2.3.4.15. Dystrybucja do jednostek wytwórczych sygnałów regulacji wtórnej i trójnej może być realizowana z wykorzystaniem protokołów UTRT lub ICCP. Rodzaj stosowanego protokołu jest każdorazowo uzgadniany pomiędzy OSP a właścicielem jednostki wytwórczej.

2.2.3.5. **Wymagania techniczne dla układów pomiarowych energii elektrycznej**

2.2.3.5.1. Wymagania techniczne dla układów pomiarowych energii elektrycznej dotyczą OSP, OSD w zakresie koordynowanej sieci 110 kV, podmiotów przyłączonych do sieci zamkniętej.

2.2.3.5.2. Sieć przesyłowa oraz urządzenia instalacje i sieci podmiotów przyłączonych do sieci zamkniętej powinny być wyposażone w układy pomiarowe realizujące co najmniej funkcje pomiaru energii czynnej i biernej w dwóch kierunkach.

2.2.3.5.3. Wymagania techniczne dla układów pomiarowych są określone dla:

(1) układów pomiarowo - rozliczeniowych, dla których mierzone wielkości energii stanowią podstawę do rozliczeń,

(2) układów pomiarowych bilansowo - kontrolnych, dla których mierzone wielkości energii stanowią podstawę do monitorowania wskazań układów pomiarowo - rozliczeniowych oraz bilansowania obiektów i obszarów sieciowych.

2.2.3.5.4. Rozwiązania techniczne dla poszczególnych układów pomiarowych uzależnia się od wielkości mocy znamionowej przyłączanego urządzenia, instalacji lub sieci i dzieli się na 3 kategorie:

(1) kategoria 1 - dla pomiarów energii elektrycznej przy mocy znamionowej urządzenia równej 30 MVA lub wyższej;

(2) kategoria 2 - dla pomiarów energii elektrycznej przy mocy znamionowej urządzenia zawartej w przedziale od 1 MVA do 30 MVA;

(3) kategoria 3 - dla pomiarów energii elektrycznej przy mocy znamionowej urządzenia mniejszej niż 1 MVA.

2.2.3.5.5. Dla układów pomiarowych kategorii 1, o których mowa w pkt 2.2.3.5.4 (1) ustala się następujące wymagania:

(1) przekładniki prądowe i napięciowe w układach pomiarowo - rozliczeniowych powinny mieć dwa rdzenie i dwa
uzwożenia pomiarowe o klasie dokładności 0,2 służące do pomiaru energii elektrycznej;

(2) liczniki energii elektrycznej w układach pomiarowo - rozliczeniowych powinny mieć klasę dokładności nie gorszą niż 0,2 dla energii czynnej i 1 dla energii biernej;

(3) przekładniki prądowe i napięciowe w układach pomiarowych bilansowo - kontrolnych powinny mieć klasę nie gorszą niż 0,5;

(4) liczniki energii elektrycznej w układach pomiarowych bilansowo - kontrolnych powinny mieć klasę dokładności nie gorszą niż 2 dla energii czynnej i 3 dla energii biernej;

(5) liczniki energii elektrycznej powinny umożliwiać współpracę z systemami automatycznej rejestracji danych.

2.2.3.5.6. Dla układów pomiarowych kategorii 2, o których mowa w pkt 2.2.3.5.4 (2) ustala się następujące wymagania:

(1) przekładniki prądowe i napięciowe powinny mieć klasę dokładności nie gorszą niż 0,5;

(2) liczniki energii elektrycznej w układach pomiarowo - rozliczeniowych powinny mieć klasę dokładności nie gorszą niż 0,5 dla energii czynnej i 3 dla energii biernej;

(3) liczniki energii elektrycznej w układach pomiarowych bilansowo - kontrolnych powinny mieć klasę dokładności nie gorszą niż 2 dla energii czynnej i 3 dla energii biernej;

(4) liczniki energii elektrycznej powinny umożliwiać współpracę z systemami automatycznej rejestracji danych.

2.2.3.5.7. Dla układów pomiarowych kategorii 3, o których mowa w pkt 2.2.3.5.4 (3) ustala się następujące wymagania:

(1) przekładniki prądowe i napięciowe powinny mieć klasę dokładności nie gorszą niż 0,5;

(2) liczniki energii elektrycznej w układach pomiarowo - rozliczeniowych powinny mieć klasę dokładności nie gorszą niż 1 dla energii czynnej i 3 dla energii biernej;

(3) liczniki energii elektrycznej w układach pomiarowych bilansowo - kontrolnych powinny mieć klasę dokładności nie gorszą niż 2 dla energii czynnej i 3 dla energii biernej;

(4) liczniki energii elektrycznej powinny umożliwiać współpracę z systemami automatycznej rejestracji danych.

2.2.3.5.8. Dla układów pomiarowo - rozliczeniowych energii elektrycznej kategorii 1 i 2 wymagane są dwa równoważne układy pomiarowe: układ pomiarowo - rozliczeniowy energii elektrycznej podstawowy i rezerwowy, za wyjątkiem układów pomiarowo -rozliczeniowych, o których mowa w pkt 2.2.3.5.15 (6), dla których wymagany jest jedynie układ pomiarowo - rozliczeniowy energii
elektrycznej podstawowy.

2.2.3.5.9. Układ pomiarowo - rozliczeniowy rezerwowy powinien spełniać kryterium równoważności z układem pomiarowo - rozliczeniowym podstawowym.

2.2.3.5.10. Układ pomiarowo - rozliczeniowy rezerwowy jest określony jako równoważny jeśli:

(1) dla kategorii 1 - liczniki energii elektrycznej w podstawowym i rezerwowym układzie pomiarowo - rozliczeniowym są zasilane z oddzielnych rdzeni/uzwojeń przekładników zainstalowanych w tym samym polu oraz układy pomiarowo - rozliczeniowe podstawowy i rezerwowy spełniają wymagania techniczne określone w pkt 2.2.3.5.5;

(2) dla kategorii 2 - układy pomiarowo - rozliczeniowe podstawowy i rezerwowy spełniają wymagania techniczne określone w pkt 2.2.3.5.6.

2.2.3.5.11. Obciążenie po stronie wtórnej przekładników prądowych i napięciowych w układach pomiarowo - rozliczeniowych i pomiarowych bilansowo - kontrolnych powinno zawierać się w zakresie od 25% do 100% mocy znamionowych uzwojeń/rdzeni tych przekładników.

2.2.3.5.12. Współczynnik bezpieczeństwa przyrządu przekładników prądowych w układach pomiarowo - rozliczeniowych powinien FS ≤5.

2.2.3.5.13. Systemy automatycznej rejestracji danych powinny spełniać następujące funkcje:

(1) zapewniać automatyczne odczyty danych pomiarowych w okresach integracji od 15 do 60 minut,

(2) umożliwiać rejestrację energii elektrycznej z podziałem na strefy doby i sezony,

(3) zapewniać automatyczną weryfikację jakości danych pomiarowych,

(4) zapewniać przechowywanie danych pomiarowych przez okres nie krótszy niż 45 dni, przy okresie integracji 60 minut,

(5) umożliwiać półautomatyczny odczyt danych w przypadku awarii łączeni transmisyjnych.

2.2.3.5.14. Systemy automatycznej rejestracji danych powinny zapewniać możliwość podłączenia:

(1) co najmniej jednego kanału transmisji danych w przypadku rejestrowania danych z układów pomiarowych bilansowo - kontrolnych,

(2) co najmniej dwóch kanałów transmisji danych w przypadku rejestrowania danych z układów pomiarowo - rozliczeniowych, za wyjątkiem układów, o których mowa w pkt 2.2.3.5.15 (6), dla których wymagane jest zapewnienie możliwości podłączenia co najmniej jednego kanału transmisji danych.

2.2.3.5.15. Układy pomiarowo - rozliczeniowe energii elektrycznej powinny być zainstalowane:
(1) po stronie górnego napięcia transformatorów blokowych jednostek wytwórczych i transformatorów potrzeb ogólnych elektrowni, przyłączytych do sieci o napięciu znamionowym 110 kV i wyższym,

(2) po stronie 110 kV transformatorów NN/110 kV stanowiących miejsce przyłączenia urządzeń, instalacji lub sieci innych podmiotów,

(3) w miejscach dostarczania po stronie górnego napięcia transformatorów sieciowych lub w polach liniowych o napięciu znamionowym 110 kV i wyższym,

(4) w polach liniowych o napięciu znamionowym 110 kV i wyższym linii stanowiących połączenie KSE z systemami elektroenergetycznymi krajów sąsiednich,

(5) w polach liniowych o napięciu znamionowym 110 kV linii stanowiących połączenia pomiędzy sieciami OSD,

(6) na zaciskach generatorów jednostek wytwórczych świadczących regulacyjne usługi systemowe oraz jednostek, dla których wymagane jest potwierdzanie przez OSP ilości energii elektrycznej, niezbędne do uzyskania świadectw pochodzenia w rozumieniu ustawy Prawo energetyczne.

2.2.3.5.16. Podstawowe układy pomiarowo - rozliczeniowe zainstalowane: po stronie górnego napięcia transformatorów blokowych i transformatorów potrzeb ogólnych elektrowni oraz potrzeb własnych jednostek wytwórczych przyłączytych do sieci o napięciu znamionowym 220 kV lub wyższym, a także w miejscach, o których mowa w pkt 2.2.3.5.15 (2) i (4) oraz (3) w odniesieniu do odbiorców końcowych przyłączytych do sieci 220 i 400 kV, powinny być w posiadaniu OSP.

2.2.3.5.17. W sieci przesyłowej będącej w eksploatacji OSP układy pomiarowe bilansowo - kontrolne powinny być zainstalowane w polach transformatorowych, sprzęgłozych i liniowych o napięciach znamionowych 400, 220 i 110 kV, w sposób który umożliwia bilansowanie obiektów i obszarów sieciowych w podziale na poszczególne poziomy napięć.

2.2.3.6. Wymagania techniczne dla systemów pomiarowo - rozliczeniowych

2.2.3.6.1. Wymagania techniczne dla systemów pomiarowo - rozliczeniowych dotyczą OSP, podmiotów przyłączytych do sieci o napięciu znamionowym 220 kV i wyższym oraz podmiotów przyłączytych do sieci o napięciu znamionowym 110 kV w przypadku, gdy posiadają umowę przesyłania z OSP.

2.2.3.6.2. Systemy pomiarowo - rozliczeniowe powinny realizować funkcję:

(1) zdalnego odczytu danych pomiarowych z systemów automatycznej rejestracji danych,

(2) udostępniania i pozyskiwania danych pomiarowych poprzez system WIRE.
2.2.3.6.3. Funkcja zdalnego odczytu danych pomiarowych powinna zapewniać pozyskiwanie danych pomiarowych z układów pomiarowych wyposażonych w system automatycznej rejestracji danych poprzez kanały telekomunikacyjne spełniające wymagania określone w pkt 2.2.3.4.

2.2.3.6.4. Dane pomiarowe powinny być pozyskiwane wraz ze znacznikami jakości nadawanymi przez system automatycznej rejestracji danych na potrzeby weryfikacji danych pomiarowych.

2.2.3.6.5. Funkcja udostępniania i pozyskiwania danych pomiarowych powinna zapewniać wymianę danych pomiarowych, w oparciu o które są wyznaczane ilości dostaw energii będących podstawą rozliczeń prowadzonych przez OSP.

2.2.3.6.6. Dane pomiarowe powinny być wymieniane wraz ze znacznikami danych nadanymi przez system automatycznej rejestracji danych.

2.2.3.6.7. Funkcja pozyskiwania danych z układów pomiarowo - rozliczeniowych zlokalizowanych:

1. po stronie górnego napięcia transformatorów blokowych i transformatorów potrzeb ogólnych elektrowni przyłączonych do sieci o napięciu znamionowym równym 220 kV lub wyższym,
2. po stronie 110 kV transformatorów NN/110 kV,
3. po stronie górnego napięcia transformatorów NN/SN lub w polach liniowych o napięciu znamionowym wyższym niż 110 kV,
4. w polach liniowych o napięciu znamionowym 110 kV i wyższym linii stanowiących połączenie KSE z systemami krajów sąsiednich,
5. na zaciskach generatorów jednostek wytwórczych świadczących regulacyjne usługi systemowe oraz jednostek, dla których wymagane jest potwierdzanie przez OSP ilości energii elektrycznej, niezbędne do uzyskania świadectw pochodzenia w rozumieniu ustawy Prawo energetyczne, powinna być realizowana dla:
6. układów pomiarowo - rozliczeniowych podstawowych poprzez system automatycznej rejestracji danych i system zdalnego odczytu danych pomiarowych do systemu pomiarowo - rozliczeniowego OSP,
7. układów pomiarowo - rozliczeniowych rezerwowych poprzez system WIRE do systemu pomiarowo - rozliczeniowego OSP.

2.2.3.7. Wymagania techniczne dla układów elektroenergetycznej automatyki zabezpieczeniowej i urządzeń współpracujących

2.2.3.7.1. Ogólne wymagania stawiane urządzeniom elektroenergetycznej automatyki zabezpieczeniowej są następujące:

1. poszczególne elementy sieci (linie napowietrzne i kabelowe, linie odbiorów energii elektrycznej, transformatory, dławiki, łączniki szyn i szyny zbiornic), powinny być wyposażone w układy
elektroenergetycznej automatyki zabezpieczeniowej i urządzeń współpracujące (dalej „układy i urządzenia EAZ”), niezbędne do:

niezawodnej, samoczynnej, możliwie szybkiej i selektywnej likwidacji zakłóceń sieciowych; regulacji rozpływów mocy biernej i poziomów napięcia; prowadzenia ruchu stacji o górnym napięciu 750, 400, 220 i 110 kV przy użyciu środków sterownikich, lokalnych urządzeń pomiarów i sygnalizacji; odtworzenia przebiegu zakłóceń przy użyciu rejestratorów zakłóceń i zdarzeń;

(2) układy i urządzenia EAZ powinny reagować na zakłócenia w pracy elementów sieci elektroenergetycznej oraz jednostek wytwórczych, urządzeń i sieci podmiotów przyłączonych do sieci elektroenergeticznycych, takie jak: zwarcia doziemne i międzyfazowe; zwarcia metaliczne i wysokooporowe; zwarcia przemijające i trwałe; zwarcia rozwijające; zakłócenia o charakterze technologicznym w urządzeniach; nieprawidłowe działanie wyłącznika; a w szczególnych przypadkach również: niebezpieczny wzrost napięcia na liniach elektroenergetycznych; zagrożenie utraty równowagi systemu elektroenergetycznego;

(3) zabezpieczenia i automatyki poszczególnych elementów sieci i elementów do niej przyłączonych należy dostosować do sposobu ich pracy i parametrów;

(4) nastawienia automatyk i układów EAZ, urządzeń i instalacji podmiotów przyłączonych do sieci o górnym napięciu 750, 400, 220 i 110 kV, muszą być skoordynowane i liczone przez OSP. W zakresie urządzeń i instalacji podmiotów przyłączonych do sieci o napięciu znamionowym 110 kV dopuszcza się dokonywanie ww. obliczeń przez OSD, pod warunkiem dokonania uzgodnień w zakresie wykonywanych obliczeń z OSP;

(5) dla zwiększenia pewności likwidacji zakłóceń przez układy i urządzenia EAZ, uwzględniając możliwość zawętzenia elementów tych układów, należy stosować rezerwowanie urządzeń EAZ;

(6) poszczególne elementy sieci przesyłowej powinny być wyposażone w przynajmniej dwa niezależne zestawy urządzeń EAZ;

(7) dwa zabezpieczenia podstawowe linii należy stosować w sieci o napięciu znamionowym powyżej 220 kV, a w sieci o napięciu znamionowym 220 i 110 kV w przypadku braku możliwości zdalnego rezerwowania zabezpieczeń linii i występującego zagrożenia utraty równowagi KSE;

(8) w celu zapewnienia niezależności poszczególnych zestawów urządzeń EAZ, każde z nich ma współpracować z oddzielonymi: obwodami pomiarowymi prądowymi i napięciowymi, obwodami napięcia pomocniczego (sterownikimi) oraz obwodami wyłączającymi (cewkami wyłączającymi);
(9) w celu zapewnienia niezawodności pracy zestawów urządzeń EAZ w poszczególnych relacjach, łączy wzajemnie się rezerwujące powinny pracować po dedykowanych geograficznie odrębnych systemach telekomunikacyjnych zapewniających odpowiednie bezpieczeństwo i niezawodność łączy technologicznych. W szczególnie uzasadnionych przypadkach, po dokonaniu uzgodnień z OSP, może być dopuszczone inne rozwiązanie na określony czas;

(10) wszystkie łącza telekomunikacyjne dla struktur EAZ powinny być monitorowane z poziomu Centrum Zarządzania Sieci OSP w trybie on-line;

(11) obwody sterownicze napięcia pomocniczego poszczególnych obwodów urządzeń EAZ, powinny być zasilane z różnych sekcji rozdzielni prądu stałego współpracujących z oddzielnymi bateriami akumulatorowymi; zabezpieczenia włączone w poszczególne obwody powinny korzystać z innych uzupełnień (rdzeni) przekładników prądowych lub z innych uzupełnień przekładników napięciowych. Zaleca się, aby te wymagania stosować również dla ważniejszych obiektów sieci zamkniętej o napięciu znamionowym 110 kV;

(12) podstawowe urządzenia EAZ powinny być wyposażone w układy kontroli ciągłości obwodów wyłączania;

(13) dla zapewnienia synchronicznego łączenia linii i transformatorów do sieci zamkniętej niezbędne jest wyposażenie tych elementów sieci w układy kontroli synchronizacji. Wymaganie to stosuje się do pola łącznika szyn zbiorczych, służącego do zastępowania tych pól;

(14) jednostki wytwórcze muszą być wyposażone w synchronizatory umożliwiające synchronizację z siecią;

(15) w miejscu przyłączenia do sieci zamkniętej jednostek wytwórczych oraz na liniach w ważnych węzłach tej sieci może być wymagane zainstalowanie synchronizatorów dla potrzeb odbudowy systemu;

(16) systemy sterowania i nadzoru pracy obiektów elektroenergetycznych, które są przyłączone bezpośrednio do stacji o górnym napięciu 750 kV, 400 kV, 220 kV oraz 110 kV będących w posiadaniu OSP, powinny być przystosowane do współpracy z systemem sterowania i nadzoru OSP;

(17) w celu dokonywania analizy zaistniałych zakłóceń, poszczególne elementy sieci zamkniętej oraz jednostki wytwórcze, urządzenia, instalacje i sieci podmiotów przyłączonych powinny być wyposażone w systemy rejestracji zakłóceń, sygnalizacji lub rejestracji zdarzeń, a dla linii o napięciu znamionowym powyżej 110 kV także lokalizatory uszkodzeń; zaleca się, aby lokalizatory uszkodzeń stosować również w koordynowanej sieci 110 kV;

(18) na liniach o napięciu znamionowym wyższym niż 110 kV należy stosować łącza do współbieżnej pracy zabezpieczeń i dla automatyk; w wyjątkowych przypadkach może zachodzić potrzeba stosowania łącz
na liniach o napięciu znamionowym 110 kV;

(19) dla zapewnienia wysokiej dyspozycyjności urządzeniom EAZ wymagane jest stosowanie urządzeń z układami ciągłej kontroli i testowania;

(20) zapewnienie wzajemnego bezpieczeństwa obwodów wtórnych przez stosowanie: elementów o odpowiedniej izolacji, właściwej ochrony przeciwpieprzeciwnej, wysokiej jakości osprzętu instalacyjnego (zacisków, wtyków, złącz itp.) i narzędzi instalacyjnych, urządzeń odpornych na zakłócenia (kompatybilność elektromagnetyczna) w obwodach wtórnych stacji oraz zapewnienia przejrzystej architektury obwodów wtórnych i wykonywania połączeń; stosowanie układów i urządzeń EAZ oraz osprzętu instalacyjnego posiadających certyfikaty jakościowe, stosowanie w układach potrzeb własnych jednostek wytwórczych, elementów oraz rozwiązań układowych odpowiednio wysokiej jakości;

(21) uszkodzenie jednego z zabezpieczeń dedykowanych dla zabezpieczenia elementu sieciowego w stacjach o górnym napięciu 400 i 220 kV ważnych systemowo i przylektrownianych nie powinno stwarzać konieczności odstawienia pola z ruchu, a jedynie powinno stanowić podstawę do planowania czynności naprawczych.

2.2.3.7.2. Wymagania techniczne dla układów EAZ w zakresie zapewnienia w krótkim czasie likwidacji zakłóceń powinny dotyczyć:

(1) zachowania warunków równowagi dynamicznej sieci,
(2) zmniejszenia zakresu zniszczeń w miejscach powstałych zakłóceń,
(3) zapobiegania starzeniu się urządzeń sieciowych i elektrownianych,
(4) zmniejszenia zakłóceń technologicznych odbiorców końcowych,
(5) poprawy warunków bezpieczeństwa ludzi i urządzeń w obiektach sieci.

2.2.3.7.3. Uzyskanie wymaganych krótkich czasów zwarcia oraz zapewnienia selektywnych wyłączeń wymaga zastosowania:

(1) zabezpieczeń podstawowych o czasie ich działania krótkim od 30 ms,
(2) wyłączników o czasie ich wyłączania nieprzekraczającym 40 ms (z możliwością odstępstwa w uzasadnionych przypadkach),
(3) łącza do współpracy z urządzeniami teleautomatyki o czasie przekazywania sygnałów nieprzekraczającym 20 ms - dla sygnałów binarnych, oraz nieprzekraczającym 5 ms - dla sygnałów analogowych,
(4) układów lokalnego rezerwowania wyłączników z dwoma kryteriami otwarcia wyłącznika: prądowym wykorzystującym przekaźniki prądowe o szybkim działaniu i powrocie (do 20 ms) dla każdej fazy oraz wyłącznikowym wykorzystującym styki sygnałowe wyłącznika,
(5) możliwie najmniejszej liczby przekaźników pośredniczących,
(6) zabezpieczeń szyn zbiorczych o czasie działania nieprzekraczającym 20 ms,

(7) zabezpieczeń odcinkowych.

2.2.3.7.4. Linie przesyłowe o napięciu znamionowym 750 i 400 kV powinny być wyposażone w następujące układy EAZ i urządzenia współpracujące:

(1) zabezpieczenie odcinkowe (pod warunkiem dostępności odpowiedniej jakości łączacza), umożliwiające wyłączenia 1 i 3 fazowe,

(2) dwa zabezpieczenia odległościowe (od różnych producentów lub o innym algorytmie działania w przypadku produktów od jednego producenta) z pamięcią napięciową, blokadą od kolysań mocy, umożliwiające wyłączenia 1 i 3 fazowe,

(3) zabezpieczenie ziemnozwarcieowe kierunkowe dwustopniowe,

(4) układy samoczynnego ponownego załączania (SPZ) umożliwiające dokonywanie 1 i 3 fazowego cyklu samoczynnego ponownego załączania,

(5) lokalizator miejsca zwarcia,

(6) układ kontroli napięcia i synchronizacji,

(7) automatyki od wzrostu napięcia (jeśli jest niezbędna z powodów systemowych, w punktach sieci, gdzie to wymagane).

2.2.3.7.5. Linie przesyłowe o napięciu znamionowym 220 kV wyposaża się alternatywnie w następujące układy EAZ i urządzenia współpracujące:

(1) zabezpieczenie odcinkowe (pod warunkiem dostępności odpowiedniej jakości łączacza), umożliwiające wyłączenia 1 i 3 fazowe,

(2) w liniach odchodzących z rozdziałni ważnych systemowo i przylektrownianych należy stosować zabezpieczenia jak dla linii 400 kV,

(3) w pozostałych liniach dopuszcza się stosowanie jednego zabezpieczenia odległościowego lub dwóch zabezpieczeń podstawowych - odcinkowego i odległościowego,

(4) jedno dwustopniowe zabezpieczenie prądowe reagujące na zwarcia z ziemią,

(5) układy samoczynnego ponownego załączania (SPZ) umożliwiające dokonywanie 1 i 3 fazowego cyklu samoczynnego ponownego załączania,

(6) lokalizator miejsca zwarcia,

(7) układ kontroli napięcia i synchronizacji.

2.2.3.7.6. Linie o napięciu znamionowym 110 kV powinny być wyposażone w następujące układy EAZ i urządzenia współpracujące:
(1) jedno zabezpieczenie podstawowe - odległościowe lub odcinkowe. W przypadku linii kablowych lub napowietrznych o długości do 2 km, należy stosować zabezpieczenia odcinkowe,
(2) jedno zabezpieczenie rezerwowe - odległościowe lub ziemnozwarcowe, a dla linii promieniowych - prądowe,
(3) urządzenia automatyki 3 fazowego samoczynnego ponownego załączania (SPZ),
(4) pożądany w liniach o dużej liczbie zakłóceń lokalizator miejsca zwarcia.

2.2.3.7.7. Linie blokowe powinny być wyposażone w następujące układy EAZ i urządzenia współpracujące (wszystkie zabezpieczenia linii blokowej powinny działać na 3 fazowe wyłączenie wyłącznika blokowego):
(1) dwa zabezpieczenia podstawowe umożliwiające wyłączenia 3 fazowe,
(2) zabezpieczenie rezerwowe reagujące na niesymetryczne zwarcia z ziemią w linii blokowej i sieci zewnętrznej,
(3) elementy układów APKO,
(4) układ bezwarunkowego wyłączenia wyłącznika blokowego od sygnału przesłanego z nastawni blokowej.
Wszystkie ww. zabezpieczenia działają na 3-fazowe otwarcie wyłącznika.

2.2.3.7.8. Transformatory o górnym napięciu znamionowym 750 kV, 400 kV i 220 kV powinny być wyposażone w następujące układy EAZ i urządzenia współpracujące:
(1) dwa zabezpieczenia podstawowe (różnicowe) reagujące na zwarcia zlokalizowane w transformatorse, z wyjątkiem zwań zwojowych;
(2) po dwa zabezpieczenia rezerwowe (zabezpieczenie odległościowe, zabezpieczenie ziemnozwarcowe) po każdej stronie uzwojenia górnego i dolnego napięcia transformatora;
(3) zabezpieczenia technologiczne (producenta): zabezpieczenie przepływowo - gazowe, modele ciepłne oraz czujniki temperaturowe transformatora;
(4) zabezpieczenia w punkcie/punktach gwiazdowych transformatora;
(5) zabezpieczenia ziemnozwarcowe prądowe po stronie górnego i dolnego napięcia transformatora;
(6) zabezpieczenie nadprądowe od przeciżeń transformatora;
(7) układy automatycznej regulacji napięcia ARST;
(8) układ sygnalizujący przeciżeń transformatora prądem;
(9) układ monitorowania warunków pracy transformatorów.

2.2.3.7.9. Transformatory mocy dwu i wielouzwojeniowe 110 kV/SN/SN powinny być wyposażone w następujące układy EAZ i urządzenia współpracujące:
1. zabezpieczenia podstawowe reagujące na zwarcie w transformatorze - zwarcowo-prądowe, a dla transformatorów powyżej 5 MVA różnicowe,

2. każda strona transformatora powinna być wyposażona w zabezpieczenia nadprądowo - zwłoczne,

3. każda strona transformatora powinna być wyposażona w zabezpieczenia przeciążenia (transformatory dwuuzwojeniowe zabezpiecza się tylko po jednej stronie),

4. zaleca się, aby każda ze stron średniego napięcia (SN) transformatora była wyposażona w zabezpieczenia umożliwiające skracanie czasu zwarcia na szynach średniego napięcia (SN),

5. zabezpieczenia fabryczne transformatorów: temperaturowe oraz gazowo - przepływowe kadzi i gazowo - podmuchowe przełącznika zaczepek,

6. zabezpieczenia transformatora reagujące na zwarcia wewnętrzne i zewnętrzne powinny działać na wyłączenie.

2.2.3.7.10. W przypadku wykorzystywania użwożenia średniego napięcia transformatorów, o których mowa w pkt 2.2.3.7.8 - 9, do zasilania potrzeb własnych stacji/rozdzielni lub podłączenia dławika, należy dodatkowo wyposażyć stronę średniego napięcia transformatora w następujące urządzenia EAZ:

1. dwustopniowe zabezpieczenie napięciowe od zwarci doziemnych,

2. dwustopniowe zabezpieczenie nadprądowe,

3. dodatkowe zabezpieczenia nadprądowe i zerowonapięciowe w układzie z wyłącznikiem po stronie średniego napięcia.

2.2.3.7.11. Dławiki z izolacją powietrzną przyłączone do strony średniego napięcia transformatorów, o których mowa w pkt 2.2.3.7.8 - 9, powinny być wyposażone w następujące układy i urządzenia EAZ:

1. zabezpieczenie nadprądowe dwustopniowe,

2. zabezpieczenie prądowe składowej przeciwnej,

3. zabezpieczenie nadnapięciowe szyn SN.

Dławiki powinny być objęte zabezpieczeniem różnicowym transformatora. Dławiki z izolacją olejową dodatkowo wyposaża się w zabezpieczenia technologiczne.

2.2.3.7.12. Dławiki z izolacją olejową o napięciu znamionowym 750 i 400 kV powinny być wyposażone w następujące układy i urządzenia EAZ:

1. zabezpieczenie różnicowe,

2. zabezpieczenie impedancyjne lub nadprądowo - zwłoczne,

3. zabezpieczenia technologiczne,
2.2.3.7.13. Transformatory o górnym napięciu znamionowym 220 lub 110 kV, których napięciem dolnym jest napięcie średnie w sieciach promieniowych powinny być wyposażone w następujące układy i urządzenia EAZ:

1. zabezpieczenie różnicowe,
2. zabezpieczenie impedancyjne lub nadprądowe dwustopniowe po stronie górnego napięcia,
3. zabezpieczenie ziemnozwarciowe prądowe po stronie górnego napięcia transformatora pracującego w układzie blokowym z linią,
4. zabezpieczenie nadprądowe dwustopniowe po stronie dolnego napięcia,
5. zabezpieczenia technologiczne.
Zabezpieczenia z pkt (2) - (3) są instalowane w punkcie przyłączenia transformatora do sieci.

2.2.3.7.14. Wszystkie rodzaje łączników szyn należy wyposażyć w następujące układy EAZ i urządzenia współpracujące:

1. jedno zabezpieczenie podstawowe pracujące w trybie na rozcianie spiętych szyn zbiorczych działające na wyłączenie 3 fazowe własnego wyłącznika,
2. pola łączników szyn zastępujących pola linii przesyłowych, transformatorów a także linii blokowych należy wyposażyć w dodatkowy zestaw urządzeń EAZ, umożliwiający realizację wszystkich funkcji zabezpieczeniowych, niezbędnych przy użyciu pola łącznika szyn do zastapienia innego pola, w tym układ umożliwiający współpracę łącznika szyn z zabezpieczeniami technologicznymi transformatora oraz bloku elektrowni,
3. dopuszcza się stosowanie jednego, zamiast dwóch zabezpieczeń podstawowych oraz niestosowanie lokalizatora miejsca zwarcia.

2.2.3.7.15. Szymy zbiorcze rozdzielni 750, 400, 220 i 110 kV należy wyposażyć w jeden zespół zabezpieczenia szyn, zapewniający wyłączenie systemów (sekcji) szyn zbiorczych, w tym także zaraż zlokalizowanych między wyłącznikiem a przekładnikiem prądowym w polach łączników szyn.

2.2.3.7.16. Nowobudowane, przebudowywane i remontowane rozdzielnie 110 kV stacji szynowych należy wyposażyć w układy zabezpieczenia szyn niezależne od lokalnej rezerwy wyłącznikowej.

2.2.3.7.17. W stacjach uproszczonych 110 kV typu „H” dopuszcza się możliwość rozwiązania automatyki szyn w oparciu o wsteczne strefy zabezpieczeń odległościowych pól liniowych.

2.2.3.7.18. W rozdzielniach 1,5 i 2 wyłącznikowych należy stosować uproszczone zabezpieczenie szyn zbiorczych, nie wykorzystujące informacji o stanie położenia odcinków szynowych.
2.2.3.7.19. Wszystkie rozdzielnie sieci 750, 400, 220 i 110 kV należy wyposażyć w układy lokalnej rezerwy wyłącznikowej (LRW) niezależne od układów zabezpieczeń szyn zbiorczych, przy czym za zgodą OSP dopuszcza się stosowanie układów LRW zintegrowanych z zabezpieczeniem szyn zbiorczych.

Przed wyłączaniem odpowiedniego systemu szyn, powinno być wykonane dodatkowe sterowanie wyłącznikiem pola poprzez element LRW przypisany polu, w którym nie zadziałał wyłącznik.

2.2.3.7.20. Wszystkie rozdzielnie sieci 750, 400, 220 i 110 kV należy wyposażyć w układy lokalnej rezerwy wyłącznikowej (LRW) niezależne od układów zabezpieczeń szyn zbiorczych. Układy lokalnego rezerwowania wyłączników powinny, gdy nie zadziałał wyłącznik:

(1) w polu linii przesyłowej - przesłać sygnał na jej drugi koniec,
(2) w polu linii blokowej - przesłać sygnał wyłączający transformator po stronie dolnego napięcia lub sygnał odwzbudzenia generatora - gdy nie ma wyłącznika generatorowego,
(3) w przypadku niezadziałania wyłącznika w polu transformatora o górnym napięciu 400 lub 220 kV - przesłać sygnał wyłączający transformator po stronie dolnego napięcia,
(4) w polu łącznika szyn sprzegającego systemy - wyłączyć obydwa systemy szyn połączone tym wyłącznikiem.

Układy lokalnego rezerwowania wyłączników powinny także, gdy niezadziałał dowolny wyłącznik wyłączany przez układy i urządzenia EAZ szyn zbiorczych - zrealizować próbę bezzwłocznego powtórnego wyłączenia uszkodzonego wyłącznika.

2.2.3.7.21. Łącza w układach EAZ i urządzeniach współpracujących powinny zapewnić dla linii przesyłowych przesyłanie następujących sygnałów:

(1) od pierwszego zabezpieczenia odległościowego,
(2) od drugiego zabezpieczenia odległościowego,
(3) dla zabezpieczeń odcinkowych,
(4) od zabezpieczeń ziemnozwarcjiowych,
(5) od układu automatyki od nadmiernego wzrostu napięcia,
(6) od układu lokalnego rezerwowania wyłączników na bezwarzunkowe wyłączenie elementu systemu linii na drugim jej końcu,
(7) topologie pól przeciwlęgich dla automatyki przeciwołysańczo - odciągającej (od układów APKO),
(8) na liniach blokowych do przesyłania sygnałów z zabezpieczeń pomiędzy stacją elektroenergetyczną a jednostką wytwórczą.

2.2.3.7.22. Wskazane jest aby jednocześnie wykorzystać do przesyłania sygnałów, o których mowa w pkt 2.2.3.7.21, dwa niezależne łącza, w tym co najmniej...
2.2.3.7.23. Wymaga się dla sygnałów bezwarunkowego wyłączania drugiego końca linii zapewnienia dwóch niezależnych łącz - dwa łącza, sygnały kodowane. Dla automatyków i sygnałów jednostka wytwórcza - stacja elektroenergetyczna należy stosować dwie niezależne drogi transmisji. Odstawienie z pracy na czas naprawy lub przeglądu jednego łącza nie powinno powodować ograniczeń ruchowych w pracy sieci.

2.2.3.7.24. Zabezpieczenie odcinkowe linii przesyłowych powinno być wyposażone we własne łącze, wykorzystane tylko do sprzęgania półkompletów. W przypadku łącza światłowodowego wykorzystuje się wydzielone włókn optyczne światłowodu zainstalowanego na linii lub dedykowane łącza cyfrowe o stabilnych parametrach pracując w konfiguracji punkt - punkt.

2.2.3.7.25. Przesyłanie sygnałów od zabezpieczeń linii przesyłowych powinno odbywać w pierwszej kolejności z zachowaniem wysokiej niezawodności ich przekazywania i mieć priorytet, przy zachowaniu wysokiej niezawodności przekazywania sygnałów, szczególnie w wypadkach bezwarunkowego wyłączania drugiego końca linii (dwa łącza, sygnały kodowane).

2.2.3.7.26. Konstrukcja, zasada działania i sposób eksploatacji urządzenia zabezpieczeń linii przesyłowych i współpracujące z nimi łącza powinny być traktowane jako jeden zespół urządzeń.

2.2.3.7.27. Rejestratory zakłóceń sieciowych przeznaczone do wykonywania analiz przebiegów zakłóceń oraz działania układów EAZ oraz wyłączników, powinny być instalowane we wszystkich czynnych polach rozdzielni przesyłowych. Rejestratory zakłóceń sieciowych powinny:

1. rejestrować w każdym polu sygnały analogowe: 3 napięcia i 3 prądy fazowe oraz napięcie 3U0 i prąd 3I0,

2. rejestrować sygnały o pobudzeniu zabezpieczeń podstawowych, wszystkie sygnały o zadańaniu zabezpieczeń lub automatyk na wyłączenie, wszystkie sygnały telezabezpieczeniowe (nadawanie i odbiór), sygnały załączające od układów SPZ,

3. rejestrować przebiegi wolnozmienne,

4. rejestrować zapis w zalecanym formacie Comtrade.

Powinien być łatwy dostęp do rejestratora zakłóceń sieciowych - lokalnego w miejscu jego zainstalowania oraz zdalnego.

2.2.3.7.28. Przekaźniki pośredniczące powinny spełniać następujące wymagania:

1. zaleca się stosowanie w zabezpieczeniach przekaźników wyjściowych (wyłączających) - zestyków o zdolności wyłączalnej dostosowanej do wielkości poboru mocy cewek wyłączających wyłączników oraz wyposażonych w układy ograniczające przepięcia powstające przy rozłączaniu obwodu cewki wyłączającej,

2. w układach sterowania powinny być stosowane wysokiej jakości przekaźniki dwustanowe.
2.2.3.7.29. W układach EAZ stosuje się następujące przekładniki prądowe:
(1) wolnostojące, pięciordzeniowe zainstalowane w polach elementów sieci przesyłowej, w których rdzenie 3, 4 i 5 są rdzeniami zabezpieczeniowymi klasy 5P20 o mocy odpowiedniej dla danych obwodów i zasilanych układów i urządzeń EAZ,
(2) kombinowane,
(3) zainstalowane w przepustach transformatorów - przewiduje się wykorzystywanie dla układów i urządzeń EAZ nie mniej niż dwóch rdzeni o odpowiednich parametrach,
(4) zainstalowane w przewodach uziemiających punkt gwiazdowy transformatorów.

2.2.3.7.30. W polach elementów sieci przesyłowej stosuje się przekładniki napięciowe pojemnościowe, indukcyjne i kombinowane, posiadające trzy uzuwienia wtrórne, przy czym trzecie połączone jest w układ otwartego trójkąta. Uzuwienia nr II i III współpracują z układami i urządzeniami EAZ (uzwojenie nr II klasy 3P, uzuwienie nr III klasy 6P o mocach odpowiednich dla konkretnych obwodów i zasilanych urządzeń EAZ).

2.2.3.7.31. Dobór pojemnościowych i indukcyjnych przekładników napięciowych oraz przekładników prądowych musi zapewnić sprawdzoną prawidłową współpracę z układami i urządzeniami EAZ w miejscu ich zainstalowania.

2.2.3.7.32. Wyłączniki 750, 400 i 220 kV powinny być wyposażone:
(1) z kolumnami nie sprzężonymi mechanicznie, w zabezpieczenie od niezgodności położenia jego kolumn,
(2) w blokadę, która po wyłączeniu wyłącznika uniemożliwia jego załączenie od ewentualnego trwałego impulsu załączającego,
(3) w komplet zestyków pomocniczych w ilości i konfiguracji dostosowanej do potrzeb obwodów wtórnych pola,
(4) do kontroli otwarcia się wyłącznika powinny być stosowane 2 kryteria: prądowe z przekaźnikami dla każdej fazy oraz wyłącznikowe przy wykorzystaniu zestyków sygnałowych wyłącznika,
- oraz umożliwiać realizację funkcji samoczynnego ponownego załączania.

2.2.3.7.33. Odłączniki powinny być wyposażone w komplet zestyków, w ilości i konfiguracji dostosowanej do potrzeb układów sterowania, sygnalizacji, zabezpieczeń szyn zbiorczych i układu lokalnej rezerwy wyłącznikowej.

2.2.3.7.34. Układy i urządzenia EAZ powinny spełniać szczegółowe wymagania określone przez OSP lub odpowiedniego OSD. Dotyczy to urządzeń czynnych, jak i nowoprojektowanych. Układy i urządzenia EAZ nowoprojektowane powinny być na etapie projektów wstępnych techniczno-montażowych uzgadniane i zatwierdzane przez OSP lub OSD.

2.2.3.7.35. Urządzenia, układy i urządzenia EAZ, aparaty, osprzęt instalacyjny oraz ich elementy powinny posiadać certyfikaty jakości i świadectwa dopuszczających
zastosowanie ich w obiektach sieci przesyłowej. Dotyczy to w szczególności:

1. świadectw jakości i protokołów z wynikami badań laboratoriów potwierdzających zgodność wykonania urządzeń z wymaganiami norm międzynarodowych i europejskich,
2. świadectw jakości i protokołów z wynikami badań przeprowadzonych przez jednostki badawcze,
3. aktualnego certyfikatu dopuszczającego do stosowania w sieci.

2.2.3.7.36. Przekaźniki realizujące funkcję samoczynnego częstotliwościowego odciągania (SCO) powinny spełniać następujące wymagania:

1. umożliwiać nastawienie wartości częstotliwości z zakresu od 47 do 50 Hz ze zmianą skokową co 0,05 Hz,
2. umożliwiać nastawienie zwłoki czasowej w zakresie od 0,05 do 1 s ze zmianą skokową co 0,05 s,
3. czas własny przekaźników nie może być większy niż 100 ms,
4. zapewniać poprawną pracę w zakresie od 0,5 do 1,1 Un,
5. dokładność pomiaru częstotliwości nie mniejsza niż 10 mHz,
6. zapewnić możliwość zastosowania blokady napięciowej w uzgodnionych z OSP przypadkach.

2.2.3.8. Wymagania wobec systemów wymiany informacji o rynku energii WIRE

2.2.3.8.1. Wymagania dotyczące łączności i transmisji danych

2.2.3.8.1.1. Wymiana danych odbywa się za pomocą redundantnych łącz od użytkownika systemu do punktów styku sieci teletransmisji OSP, w tym w oparciu o mechanizmy sieciowe protokołu TCP/IP. Jako łącza rezerwowe można zastosować bezpośredni dostęp do systemu centralnego poprzez łącza modemowe (dia-up).

2.2.3.8.1.2. Podsystem transmisji danych OSP zapewnia komunikację w protokole TCP/IP z każdym serwerem WIRE/UR z gwarantowaną przepustowością co najmniej 64 kb/s dla każdego kanalu i posiada stały adres IP, a także udostępnione porty komunikacyjne.

2.2.3.8.1.3. Podsystemy transmisji danych WIRE/UR powinny zapewniać gwarantowaną komunikację w protokole TCP/IP pomiędzy serwerem WIRE/UR a serwerem centralnym WIRE z przepustowością 64 kb/s.

2.2.3.8.1.4. Każdy serwer WIRE/UR powinien posiadać stały adres IP i udostępnione wskazane porty komunikacyjne.

2.2.3.8.1.5. Podsystem transmisji danych u OSP zapewnia niezawodną i bezpieczną transmisję danych pomiędzy serwerami systemu WIRE poprzez wydzielenie podsieci transmisyjnej stosowanej wyłącznie dla potrzeb systemu WIRE.

2.2.3.8.1.6. Szczegółowe wymagania wobec sprzętu, oprogramowania narzędziowego i systemowego systemów WIRE/UR zawierają wymagania bezpieczeństwa
dla systemów transmisji danych SOWE/EL, WIRE/UR, które OSP publikuje na swojej stronie internetowej.

2.2.3.8.2. **Wymagania dotyczące protokołów i standardów**

2.2.3.8.2.1. Do komunikacji pomiędzy systemami WIRE/UR i WIRE OSP wykorzystywany jest mechanizm szyfrowania i autoryzacji oparty na protokole SSL.

2.2.3.8.2.2. Przesyłanie i odbieranie dokumentów realizowane jest za pomocą narzędzia WebSphere MQ, zaś dystrybucja dokumentów odbywa się z wykorzystaniem bibliotek JMS, środowisk JAVA.

2.2.3.8.2.3. Ochrona komunikacji serwerów WIRE/UR i WIRE OSP jest realizowana na poziomie kanału SSL WebSphere MQ. Zestawienie kanału SSL odbywa się z wykorzystaniem certyfikatów menedżerów kolejek WebSphere MQ a także na podstawie nazwy kanału i adresu IP.

2.2.3.8.2.4. Zasady generowania certyfikatów menedżerów kolejek WebSphere MQ systemu WIRE/UR określają wymagania, o którym mowa w pkt 2.2.3.8.2.6.

2.2.3.8.2.5. Bezpieczny dostęp do serwera Archiwum WIRE, modułu WIRE/RP oraz modułu CCO realizowany jest poprzez szyfrowany kanał wykorzystujący technologię VPN Tunel Mode (AppGate) oraz autoryzację poprzez narzędzia RSA SecurID.

2.2.3.8.2.6. Szczegółową specyfikację rozwiązań technicznych dla systemów dopuszczonych do współpracy z systemem WIRE OSP zawierają wymagania bezpieczeństwa dla systemów transmisji danych SOWE/EL, WIRE/UR.

2.2.3.8.2.7. Wymiana informacji w systemie WIRE odbywa się poprzez odpowiednie przygotowanie dokumentów elektronicznych, zgodnie z ustalonym formatem oraz sposobem zapisu w standardzie XML (eXtensible Markup Language). Standard języka XML definiuje sposób opisu dokumentów, podstawowe typy danych oraz zasady tworzenia schematów dokumentów.

2.2.3.8.2.8. Szczegółowa specyfikacja dokumentów elektronicznych, funkcji systemów WIRE/UR oraz zbiór schematów dokumentów XML dla systemu WIRE tworzy standardy techniczne systemu WIRE, który OSP publikuje na swojej stronie internetowej.

2.2.3.9. **Wymagania wobec systemów operatywnej współpracy z elektrowniami SOWE**

2.2.3.9.1. **Wymagania dotyczące łączności i transmisji danych**

2.2.3.9.1.1. Wymiana danych odbywa się za pomocą redundantnych łącz od użytkownika systemu do punktów styku sieci teletransmisyj OSP, w tym w oparciu o mechanizmy sieciowe protokołu TCP/IP. Jako łączą rezerwowe można zastosować bezpośredni dostęp do systemu centralnego poprzez łącza modemowe (dial-up).

2.2.3.9.1.2. Podsystem transmisji danych OSP zapewnia komunikację w protokole TCP/IP z każdym serwerem SOWE/EL z gwarantowaną...
przepustowością co najmniej 64 kb/s dla każdego kanału i posiada stały adres IP, a także udostępnione porty komunikacyjne.

2.2.3.9.1.3. Podsystemy transmisji danych w elektrowniach muszą zapewniać gwarantowaną komunikację w protokole TCP/IP pomiędzy każdym serwerem SOWE/EL a systemem centralnym SOWE z przepustowością 64 kb/s.

2.2.3.9.1.4. Każdy serwer SOWE/EL powinien posiadać stały adres IP i udostępnione porty komunikacyjne.

2.2.3.9.1.5. Podsystem transmisji danych u OSP zapewnia niezawodną i bezpieczną transmisję danych pomiędzy elementami systemu SOWE poprzez wydzielenie podcieni transmisyjnej stosowanej wyłącznie dla potrzeb systemu SOWE.

2.2.3.9.1.6. Szczegółowe wymagania wobec sprzętu, oprogramowania narzędziowego i systemowego systemów SOWE/EL zawierają wymagania bezpieczeństwa dla systemów transmisji danych SOWE/EL, WIRE/UR, które OSP publikuje na swojej stronie internetowej.

2.2.3.9.2. Wymagania dotyczące protokołów i standardów

2.2.3.9.2.1. Do komunikacji pomiędzy systemami SOWE/EL i SOWE OSP wykorzystywany jest mechanizm szyfrowania i autoryzacji oparty na protokole SSL.

2.2.3.9.2.2. Przesyłanie i odbieranie dokumentów realizowane jest za pomocą narzędzia WebSphere MQ, zaś dystrybucja dokumentów odbywa się z wykorzystaniem bibliotek JMS, środowiska JAVA.

2.2.3.9.2.3. Ochrona komunikacji serwerów SOWE/EL jest realizowana na poziomie kanału SSL WebSphere MQ. Zestawienie kanału SSL odbywa się z wykorzystaniem certyfikatów menedżerów kolejk WebSphere MQ a także na podstawie nazwy kanału i adresu IP.

2.2.3.9.2.4. Zasady generowania certyfikatów dla menedżerów kolejk WebSphere MQ systemu SOWE/EL określają wymagania, o którym mowa w pkt 2.2.3.9.2.6.

2.2.3.9.2.5. Bezpieczny dostęp do serwera Archiwum SOWE oraz modułu CCO realizowany jest poprzez szyfrowany kanał wykorzystujący technologię VPN Tunnel Mode (AppGate) oraz autoryzację poprzez narzędzia RSA.

2.2.3.9.2.6. Szczegółową specyfikację rozwiązań technicznych dla systemów dopuszczonych do współpracy z systemem SOWE OSP zawierają wymagania bezpieczeństwa dla systemów transmisji danych SOWE/EL, WIRE/UR.

2.2.3.9.2.7. Wymiana informacji w systemie SOWE odbywa się poprzez odpowiednie przygotowanie dokumentów elektronicznych, zgodnie z ustalonym formatem oraz sposobem zapisu w standardzie XML. Standard języka XML definiuje sposób opisu dokumentów, podstawowe typy danych oraz zasady tworzenia schematów dokumentów.

2.2.3.9.2.8. Szczegółowa specyfikacja dokumentów elektronicznych, funkcji systemów SOWE/EL oraz zbiór schematów dokumentów XML dla systemu SOWE tworzy standardy techniczne systemu SOWE, które OSP publikuje na swojej
2.2.3.10. **Wymagania wobec systemu prowadzenia ruchu i sterowania pracą KSE (SCADA)**

2.2.3.10.1. **Wymagania dotyczące łączności i transmisji danych**

2.2.3.10.1.1. Pozyskiwanie danych z obiektów energetycznych odbywa się za pomocą łąca typu punkt - punkt lub poprzez wykorzystanie sieci teletransmisji OSP.

2.2.3.10.1.2. Wymiana danych pomiędzy OSP a OSD odbywa się za pomocą łącz podstawowego wykorzystującego sieć teletransmisji OSP, w tym mechanizmy sieciowe oparte na protokołach TCP/IP.

2.2.3.10.1.3. Podsystem transmisji danych u OSP zapewnia gwarantowaną komunikację w protokole TCP/IP pomiędzy każdym serwerem wchodzącym w skład systemu SCADA.

2.2.3.10.2. **Wymagania dotyczące protokołów i standardów**

2.2.3.10.2.1. Pozyskiwanie danych z obiektów energetycznych odbywa się za pomocą protokołów UTJ, DNP 3.0, IEC 870-5-101, IEC 870-5-104.

2.2.3.10.2.2. Do wymiany danych z systemami SCADA OSD jest stosowany protokół ICCP/TASE.2.

2.2.3.10.2.3. System SCADA OSP umożliwia zestawienie połączenia z systemami zewnętrznymi poprzez dedykowany router dostępowy. Router wyposażony jest w funkcje ochrony przed nieautoryzowanym dostępem do serwerów systemu SCADA.

2.2.3.10.3. **Wymagania dotyczące dokładności przetwarzania pomiarów wykorzystywanych w systemie SCADA**

2.2.3.10.3.1. Wymagania dotyczące dokładności pomiarów wielkości elektrycznych wykorzystywanych przez system SCADA dotyczą:

(1) zakresu dokładnego pomiaru, tzn. takiego zakresu pomiaru, w którym kompleksowa dokładność nie jest gorsza niż wynikająca z klasy dokładności określonej w pkt 2.2.3.10.3.3,

(2) kompleksowej dokładności pomiarów.

Kompleksowa dokładność pomiarów jest definiowana jako uchyb między wartościami źródłowymi (pierwotne wartości wielkości mierzonych) a uzyskanymi w miejscu przeznaczenia wyrażony w procentach w odniesieniu do pełnego nominalnego zakresu wielkości mierzonych (PN-EN 60870-4).

2.2.3.10.3.2. W odniesieniu do zakresu dokładnego pomiaru, dla wielkości elektrycznych pomiarowych wykorzystywanych przez system SCADA dla całego toru pomiarowego (przekładniki pomiarowe, przetworniki, tor transmisyjny), obowiązują:

(1) dla pomiaru wartości prądu - wymaga się zapewnienia dokładnego pomiaru dla wartości od 0 do 150% In, przy obciążeniu znamionowym
przekładników;
(2) dla pomiaru wartości napięcia - wymaga się zapewnienia dokładnego pomiaru dla wartości 0 do 130% U_n;
(3) dla pomiaru mocy - wymaga się zapewnienia dokładnego pomiaru dla wartości od –150 do +150% mocy znamionowej;
(4) dla pomiaru częstotliwości od 45 do 55 Hz.

2.2.3.10.3.3. W odniesieniu do kompleksowej dokładności pomiarów dla systemu SCADA wymaga się uzyskania:
(8) dla pomiaru prądu i napięcia - klasy 0,5 w przypadku przekładników klasy 0,2 oraz klasy 1,0 w przypadku przekładników klasy 0,5;
(9) dla pomiaru wielkości obliczanych np. P, Q - klasy 2,0;
(10) dla częstotliwości - dokładności ±5 mHz.

2.2.3.11. Wymagania wobec systemów monitorowania parametrów pracy SMPP
2.2.3.11.1. Wymagania dotyczące łączności i transmisji danych
2.2.3.11.1.1. Wymiana danych odbywa się za pomocą łączca podstawowego od użytkownika systemu wymiany do punktu styku sieci teletransmisji OSP, w tym mechanizmy sieciowe oparte na protokole TCP/IP.
2.2.3.11.1.2. Podsystem transmisji danych u OSP zapewnia gwarantowaną komunikację w protokole TCP/IP pomiędzy każdym serwerem SMPP z przepustowością co najmniej 64 kb/s dla każdego kanału i posiada stały adres IP, a także udostępnione porty komunikacyjne.
2.2.3.11.1.3. Podsystemy transmisji danych w elektrowniach muszą zapewniać gwarantowaną komunikację w protokole TCP/IP pomiędzy serwerem lokalnego SMPP a serwerem centralnym z przepustowością 64 kb/s.
2.2.3.11.1.4. Każdy serwer SMPP powinien posiadać stały adres IP i udostępnione porty komunikacyjne.
2.2.3.11.1.5. Podsystem transmisji danych u OSP zapewnia niezawodną i bezpieczną transmisję danych pomiędzy serwerami systemu SMPP poprzez wydzielenie podsieci transmisyjnej stosowanej wyłącznie dla potrzeb systemu SMPP.
2.2.3.11.1.6. OSP przekazuje zainteresowanym podmiotom szczegółowe wymagania wobec sprzętu, oprogramowania narzędziowego i systemowego systemów SMPP.

2.2.3.11.2. Wymagania dotyczące protokołów i standardów
2.2.3.11.2.1. Przesyłanie danych realizowane jest za pomocą protokołu ICCP/TASE.2 (bloki 1 i 2) opartego na protokole TCP/IP zgodnie z normami: IEC 870-6-503, IEC 870-6-802, IEC 870-6-702, ISO/IEC 9506, zaś uzupełnianie danych archiwalnych odbywa się z wykorzystaniem protokołu https.
2.2.3.11.2.2. Szczegółową specyfikację rozwiązań technicznych zweryfikowanych
i dopuszczonych do współpracy z systemem SMPP zawiera specyfikacja techniczna dla węzłów lokalnych systemu SMPP, którą OSP udostępnia zainteresowanym podmiotom.

2.3. Korzystanie z sieci elektroenergetycznych

2.3.1. Charakterystyka korzystania z sieci elektroenergetycznych

2.3.1.1. Korzystanie z sieci przesyłowej umożliwia realizację dostaw energii elektrycznej w sposób ciągły i niezawodny, przy zachowaniu obowiązujących parametrów jakościowych energii elektrycznej i standardów jakościowych obsługi użytkowników systemu lub określonych w umowie przesyłania.

2.3.1.2. OSP na zasadzie równoprawnego traktowania oraz na zasadach i w zakresie wynikających z obowiązujących przepisów prawa i IRiESP, świadczy usługi przesyłania, zapewniając wszystkim użytkownikom systemu, zaspokojenie uzasadnionych potrzeb w zakresie przesyłania energii elektrycznej w obrocie krajowym i transgranicznym.

2.3.1.3. OSP w zakresie wynikającym z ustawy z dnia 29 czerwca 2007 r. o zasadach pokrywania kosztów powstałych u wytwórców w związku z przedterminowym rozwiązaniem umów długoterminowych sprzedaży mocy i energii elektrycznej (dalej „ustawa KDT”); Dz. U. z 2007 r. Nr 130, poz. 905 z późn. zm.) świadczy usługi udostępniania KSE.

2.3.1.4. Świadczenie usługi udostępniania KSE odbywa się na podstawie umowy przesyłania albo umowy udostępniania KSE oraz na zasadach i warunkach określonych w ustawie KDT, IRiESP oraz Taryfie Polskich Sieci Elektroenergetycznych S.A., zatwierdzonej przez Prezesa URE (dalej „Taryfa OSP”).

2.3.2. Charakterystyka i zakres usług przesyłania świadczonych przez OSP

2.3.2.1. OSP świadczy usługi przesyłania: krajowe i usługi transgranicznej wymiany energii elektrycznej.

2.3.2.2. Usługi przesyłania krajowe obejmują:
(1) przesyłanie energii elektrycznej rozumiane jako transport energii elektrycznej za pomocą sieci przesyłowej;
(2) korzystanie z KSE;
(3) prowadzenie rozliczeń wynikających z niezbilansowania energii elektrycznej dostarczonej i pobranej z KSE.

2.3.2.3. Usługi transgranicznej wymiany energii elektrycznej (dalej „wymiany międzysystemowej”) obejmują:
(1) wyznaczanie wielkości i udostępnianie zdolności przesyłowych wymiany międzysystemowej;
(2) rezerwowanie zdolności przesyłowych wymiany międzysystemowej w
zakresie wynikającym z uzyskanych przez użytkowników systemu, zgodnie z zasadami rezerwacji zdolności przesyłowych wymiany międzysystemowej, wielkości zdolności przesyłowych wymiany międzysystemowej;

(3) realizację wymiany międzysystemowej.

2.3.3. Usługi przesyłania krajowe

2.3.3.1. W zakresie przesyłania energii elektrycznej OSP w szczególności:

(1) dokonuje transportu energii elektrycznej wprowadzanej do lub odbieranej z miejsc dostarczania określonych w umowie przesyłania;

(2) zapewnia długoterminową zdolność KSE do zaspokojenia uzasadnionych potrzeb w zakresie przesyłania energii elektrycznej, poprzez należyty rozwój, rozbudowę, eksploatację, konserwację i remonty infrastruktury sieciowej, w zakresie sieci przesyłowej;

(3) przekazuje dane pomiarowo - rozliczeniowe, niezbędne do przeprowadzenia procesu rozliczeń.

2.3.3.2. W zakresie korzystania z KSE, polegającego na utrzymywaniu ciągłości dostarczania i odbioru energii elektrycznej w KSE oraz niezawodności jej dostarczania, jak też na utrzymywaniu wymagań w zakresie parametrów jakościowych energii elektrycznej OSP w szczególności:

(1) zapewnia w sposób ciągły zbilansowanie poboru i produkcji energii elektrycznej w KSE;

(2) dokonuje ciągłej regulacji częstotliwości i napięcia;

(3) dokonuje zakupu rezerw mocy i pozostałych usług systemowych, niezbędnych do prawidłowego funkcjonowania KSE, niezawodności jego pracy i utrzymywania parametrów jakościowych energii elektrycznej;

(4) zapewnia utrzymania odpowiedniego poziomu bezpieczeństwa pracy sieci przesyłowej oraz we współpracy z OSD koordynację pracy koordynowanej sieci 110 kV;

(5) przeciwiała powstawaniu awarii sieciowej lub awarii w systemie, w tym opracowuje i realizuje plany działania na wypadek zagrożenia wystąpienia tych awarii oraz plany odbudowy KSE po ich wystąpieniu.

2.3.3.3. W zakresie prowadzenia rozliczeń wynikających z niebilansowania energii elektrycznej dostarczonej i pobranej z KSE, OSP w szczególności:

(1) udostępnia system informatyczny wykorzystywany w procesie bilansowania KSE i prowadzenia rozliczeń;

(2) przyjmuje i weryfikuje zgłoszone do realizacji umowy sprzedaży energii elektrycznej;

(3) prowadzi z użytkownikami systemu rozliczenia wynikające z niebilansowania energii elektrycznej dostarczonej i pobranej z KSE.
oraz zarządzania ograniczeniami systemowymi.

2.3.3.4. Prowadzenie rozliczeń wynikających z niebilansowania energii elektrycznej dostarczonej i pobranej z KSE, następuje zgodnie z zasadami określonymi w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

2.3.4. Usługi wymiany międzysystemowej

2.3.4.1. Usługi wymiany międzysystemowej obejmują wymianę międzymiejskową równoległą, o której mowa w pkt 2.1.1.2.6 (1).

2.3.4.2. Wielkości zdolności przesyłowych wymiany międzysystemowej są wyznaczane przez OSP zgodnie z zasadami wyznaczania zdolności przesyłowych na liniach wymiany międzymiejskiej, które są zawarte w Załączniku nr 3 do IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

2.3.4.3. Niezbędne wielkości rezerw zdolności przesyłowych wymiany międzymiejskowej (TRM) w kierunku eksportowym i importowym, wyznaczane zgodnie z zasadami, o których mowa w pkt 2.3.4.2, OSP publikuje na swojej stronie internetowej.

2.3.4.4. OSP uzgadnia z operatorami systemów przesyłowych krajów sąsiednich zasady rezerwacji zdolności przesyłowych międzymiejskich.

2.3.4.5. Udostępnianie zdolności przesyłowych wymiany międzymiejskiej następuje zgodnie z warunkami określonymi i przyjętymi do stosowania przez OSP i operatorów systemów przesyłowych krajów sąsiednich w zasadach rezerwacji zdolności przesyłowych wymiany międzymiejskiej.

2.3.4.6. Zasady wyznaczania zdolności przesyłowych na liniach wymiany międzymiejskiej oraz zasady rezerwacji zdolności przesyłowych wymiany międzymiejskiej OSP publikuje na swojej stronie internetowej.

2.3.4.7. W zakresie wymiany międzymiejskiej OSP w szczególnych:

(1) wyznacza zdolności przesyłowe wymiany międzymiejskiej (całkowite, rezerwy, dostępne do wykorzystania przez użytkowników systemu);

(2) rezerwuje dla użytkownika systemu wielkości zdolności przesyłowych wymiany międzymiejskiej, uzyskane przez tego użytkownika systemu zgodnie z zasadami rezerwacji zdolności przesyłowych wymiany międzymiejskiej;

(3) przyjmuje i dokonuje weryfikacji zgłoszonych w formie grafików wymiany międzymiejskiej umów sprzedaży energii elektrycznej w obrocie transgranicznym;

(4) uzgadnia zgłoszone grafiki wymiany międzymiejskiej z operatorami systemów przesyłowych krajów sąsiednich;

(5) dokonuje fizycznej realizacji wymiany międzymiejskiej przy współpracy z operatorami systemów przesyłowych krajów sąsiednich.
2.3.5. Warunki świadczenia przez OSP usług przesyłania; w tym usługi udostępniania KSE

2.3.5.1. Podstawowe warunki świadczenia przez OSP usług przesyłania

2.3.5.1.1. Usługi przesyłania świadczone są przez OSP przy zachowaniu zasady równoprawnego traktowania wszystkich podmiotów korzystających z tych usług.

2.3.5.1.2. Świadczenie usług przesyłania odbywa się na podstawie umowy przesyłania oraz na warunkach określonych w koncesji OSP na przesyłanie energii elektrycznej, IRiESP i Taryfie OSP.

2.3.5.1.3. OSP świadczy usługi przesyłania, jeżeli istnieją układy pomiarowo-rozliczeniowe wraz z infrastrukturą teleinformatyczną, niezbędne do świadczenia usług przesyłania i prowadzenia ich rozliczeń.

2.3.5.1.4. Szczegółowe warunki świadczenia usług przesyłania, w tym w zakresie wymiany międzysystemowej określa IRiESP oraz postanowienia umowy przesyłania.

2.3.5.2. Warunki formalno-prawne świadczenia usług przesyłania

2.3.5.2.1. Procedura rozpoczęcia świadczenia usług przesyłania

2.3.5.2.1.1. Rozpoczęcie przez OSP świadczenia usług przesyłania następuje zgodnie z poniższą procedurą:

 (1) wystąpienie podmiotu do OSP z wnioskiem o zawarcie umowy przesyłania;
 (2) określenie przez OSP możliwości i warunków świadczenia usług przesyłania;
 (3) zawarcie przez strony umowy przesyłania;
 (4) rozpoczęcie procesu świadczenia usług przesyłania.

2.3.5.2.2. Wniosek o zawarcie umowy przesyłania

2.3.5.2.2.1. Podmiot zainteresowany korzystaniem z usług przesyłania świadczonych przez OSP jest zobowiązany złożyć wniosek o zawarcie umowy przesyłania.

2.3.5.2.2.2. Wzór wniosku o zawarcie umowy przesyłania określa w szczególności:

 (1) adres, na który należy dostarczyć lub przesłać wypełniony wniosek;
 (2) dane identyfikacyjne wnioskodawcy, takie jak: pełna nazwa podmiotu, jego adres, numer telefonu, numer faksu, adres poczty elektronicznej;
 (3) informacje odnośnie posiadanych koncesji na wytwarzanie, przesyłanie, dystrybucję lub obrót energią elektryczną;
 (4) numery identyfikacyjne wnioskodawcy, jak nr NIP, REGON;
(5) nazwę, adres banku i numer konta bankowego wnioskodawcy, które będzie wykorzystywane w ramach prowadzenia rozliczeń z tytułu realizowanych usług przesyłania;

(6) wykaz osób wraz z ich danymi teleadresowymi upoważnionych ze strony wnioskodawcy do bezpośrednich kontaktów z OSP w zakresie zagadnień dotyczących umowy przesyłania;

(7) dane dotyczące administratora bezpieczeństwa systemów WIRE/UR lub SOWE po stronie wnioskodawcy.

2.3.5.2.2.3. Podmiot zainteresowany korzystaniem ze świadczonych przez OSP usług przesyłania związanych z wymianą międzysystemową, który nie posiada zawartej z OSP umowy przesyłania, poza informacjami, o których mowa w pkt 2.3.5.2.2.2 powinien we wniosku o zawarcie umowy przesyłania zamieścić dodatkowo, co najmniej następujące informacje:

(1) wykaz osób wraz z ich danymi teleadresowymi upoważnionych ze strony wnioskodawcy do bezpośrednich kontaktów z OSP z tytułu uczestnictwa wnioskodawcy w wymianie międzysystemowej;

(2) wykaz podmiotów i osób upoważnionych do przedkładania w imieniu wnioskodawcy danych i dokumentów dotyczących realizacji wymiany międzysystemowej;

(3) posiadany kod (lub kody) identyfikacyjny EIC nadany przez uprawnione biuro kodów EIC.

2.3.5.2.2.4. Do wniosku o zawarcie umowy przesyłania należy dołączyć dodatkowe dokumenty określone we wzorze wniosku, a w szczególności:

(1) aktualny odpis z rejestru przedsiębiorców Krajowego Rejestru Sądowego lub zaświadczenie o wpisie do ewidencji działalności gospodarczej, a w przypadku wnioskodawcy nieposiadającego siedziby na terytorium Rzeczypospolitej Polskiej aktualny odpis z właściwego rejestru przedsiębiorców uzyskany na zasadach określonych w przepisach kraju siedziby wnioskodawcy. W przypadku wnioskodawcy nieposiadającego siedziby na terytorium Rzeczypospolitej Polskiej w w. dokumenty:

(1.1) powinny być wydane nie wcześniej niż trzy miesiące przed datą złożenia wniosku o zawarcie umowy przesyłania,

(1.2) wnioskodawca dostarcza wraz z tłumaczeniem na język polski;

(2) w przypadku wnioskodawców działających za pośrednictwem pełnomocników, pełnomocnictwa określające zakres umocowania pełnomocników;

(3) oświadczenie o umocowaniu podmiotu, który w imieniu i na rzecz wnioskodawcy będzie pełnił funkcję operatora rynku, sporządzone zgodnie ze wzorem oświadczenia określonym przez OSP (dotyczy wyłącznie wnioskodawców, którzy funkcji operatora rynku nie będą pełnić samodzielnie).
Dokumenty dołączone do wniosku o zawarcie umowy przesyłania powinny być dostarczone w oryginale lub w formie kopii potwierdzonej za zgodność z oryginałem przez osoby upoważnione do działania w imieniu wnioskodawcy lub przez notariusza.

2.3.5.2.2.5. Podmiot zainteresowany korzystaniem ze świadczonych przez OSP usług przesyłania związanych z wymianą międzysystemową, który posiada zawartą z OSP umowę przesyłania i nie jest jednocześnie uczestnikiem wymiany międzysystemowej, składa wniosek o zawarcie umowy przesyłania, zgodnie z zasadami określonymi w pkt 2.3.5.2.2.

2.3.5.2.2.6. Obowiązujący wzór wniosku o zawarcie umowy przesyłania OSP publikuje na swojej stronie internetowej.

2.3.5.2.2.7. OSP po otrzymaniu wniosku o zawarcie umowy przesyłania dokonuje jego weryfikacji pod względem kompletności i aktualności zawartych w nim danych i załączonych dokumentów. OSP rozpatruje wniosek o zawarcie umowy przesyłania w terminie 14 dni od daty jego otrzymania. W przypadku pozytywnego rozpatrzenia wniosku o zawarcie umowy przesyłania OSP niezwłocznie przekazuje wnioskodawcy projekt umowy przesyłania. W przypadku negatywnego rozpatrzenia wniosku, OSP niezwłocznie przekazuje wnioskodawcy informację o jego odrzuceniu albo wzywa wnioskodawcę do jego uzupełnienia.

2.3.5.2.2.8. OSP wzywa wnioskodawcę do uzupełnienia wniosku o zawarcie umowy przesyłania w przypadku braku niezbędnych danych lub ich niekompletności. Wnioskodawca dostarcza uzupełniony wniosek w terminie 14 dni od daty otrzymania wezwania do jego uzupełnienia.

2.3.5.2.2.9. W przypadku wezwania wnioskodawcy do uzupełnienia wniosku o zawarcie umowy przesyłania, bieg 14-dniowego terminu na rozpatrzenie wniosku o zawarcie umowy przesyłania rozpoczyna się od daty otrzymania przez OSP kompletnego wniosku spełniającego wymagania, o których mowa w pkt 2.3.5.2.2.

2.3.5.2.2.10. W przypadku niedostarczenia uzupełnionego wniosku w wymaganym terminie, OSP odrzuca przedłożony wniosek. Informację o odrzuceniu wniosku o zawarcie umowy przesyłania wraz z podaniem przyczyny OSP przekazuje wnioskodawcy w formie pisemnej.

2.3.5.2.2.11. OSP odrzuca wniosek o zawarcie umowy przesyłania sporządzony niezgodnie z wzorem wniosku publikowanym na stronie internetowej OSP.

2.3.5.2.2.12. Przyjęcie przez OSP wniosku o zawarcie umowy przesyłania stanowi podstawę do określania możliwości i warunków świadczenia usług przesyłania i przygotowania dla wnioskodawcy projektu umowy przesyłania.

2.3.5.2.2.13. Podmiot składający wniosek o zawarcie umowy przesyłania jest zobowiązany niezwłocznie powiadomić OSP o jakichkolwiek zmianach zaistniałych w danych i dokumentach zawartych w przedłożonym wniosku oraz do ponownego przedłożenia aktualnych danych i dokumentów, które uległy zmianie. Powyższy obowiązek dotyczy zmian, które zaistnieją w okresie od
daty złożenia przez wnioskodawcę wniosku do daty zawarcia z tym wnioskodawcą umowy przesyłania.

2.3.5.2.2.14. Podpisanie przez wnioskodawcę umowy przesyłania jest równoznaczne z akceptacją wszystkich postanowień IRiESP.

2.3.5.3. Umowa przesyłania i umowa udostępniania KSE

2.3.5.3.1. OSP opracowuje i udostępnia użytkownikom systemu standardy umów przesyłania oraz umowy udostępniania KSE, właściwe dla poszczególnych grup (typów) kontrahentów OSP.

2.3.5.3.2. W przypadkach, związanych w szczególności ze zmianą IRiESP lub aktów prawnych wpływających na zmianę dotychczasowych warunków świadczenia usług przesyłania oraz usługi udostępniania KSE, skutkujących koniecznością dokonania istotnych zmian postanowień zawartych umów przesyłania lub umów udostępniania KSE, OSP może udostępniać standardy aneksów do tych umów.

2.3.5.3.3. Udostępnianie standardów umów przesyłania oraz umów udostępniania KSE lub standardów aneksów do tych umów odbywa się poprzez ich opublikowanie i aktualizację na stronie internetowej OSP.

2.3.5.3.4. Standardy, o których mowa w pkt 2.3.5.3.3, stanowią podstawę do przygotowania projektu umowy przesyłania lub projektu umowy udostępniania KSE, jak też projektu aneksu do tych umów.

2.3.5.3.5. Projekty umów przesyłania lub umów udostępniania KSE i aneksów do tych umów, opracowane przez użytkowników systemu nie stanowią podstawy przygotowania projektu umowy przesyłania, projektu umowy udostępniania KSE lub projektu aneksu do tych umów.

2.3.5.4. Podstawowe warunki świadczenia przez OSP usług przesyłania związanych z wymianą międzysystemową

2.3.5.4.1. Warunki formalno-prawne świadczenia przez OSP usług przesyłania związanych z realizacją wymiany międzysystemowej

2.3.5.4.1.1. OSP świadczy usługi przesyłania związane z realizacją wymiany międzysystemowej wyłącznie podmiotom, które:

(1) zawarły z OSP umowę przesyłania, regulującą w szczególności warunki uczestnictwa w wymianie międzysystemowej;

(2) uzyskały zdolności przesyłowe wymiany międzysystemowej, niezbędne do realizacji zgłaszanych do OSP umów sprzedaży energii elektrycznej w obrocie transeuropejskim.

2.3.5.4.1.2. Uzyskanie zdolności przesyłowych wymiany międzysystemowej następuje zgodnie z zasadami rezerwacji zdolności przesyłowych wymiany międzysystemowej, o których mowa pkt 2.3.4.6.

2.3.5.4.1.3. Podmiot ubiegający się o uczestnictwo w wymianie międzysystemowej, który posiada zawartą z OSP umowę przesyłania i nie jest jednocześnie
uczestnikiem wymiany międzywyjściowej jest zobowiązany złożyć wniosek o zawarcie umowy przesyłania, w zakresie o którym mowa w pkt 2.3.5.2.2.3 (dalej „wniosek o zawarcie umowy przesyłania, w zakresie wymiany międzywyjściowej”).

2.3.5.4.1.4. OSP po otrzymaniu wniosku o zawarcie umowy przesyłania, w zakresie wymiany międzywyjściowej, dokonuje jego weryfikacji pod względem kompletności i aktualności zawartych w nim danych i załączonych dokumentów. OSP rozpatruje wniosek o uczestnictwo w wymianie międzywyjściowej w terminie 14 dni od daty jego otrzymania. W przypadku pozytywnego rozpatrzenia wniosku, OSP niezwłocznie przekazuje wnioskodawcy projekt aneksu do umowy przesyłania. W przypadku negatywnego rozpatrzenia wniosku, OSP niezwłocznie przekazuje wnioskodawcy informację o jego odrzuceniu albo wzywa wnioskodawcę do jego uzupełnienia.

2.3.5.4.1.5. OSP wzywa wnioskodawcę do uzupełnienia wniosku o zawarcie umowy przesyłania, w zakresie wymiany międzywyjściowej w przypadku braku niezbędnych danych lub ich niekompletności. Wnioskodawca dostarcza uzupełniony wniosek w terminie 14 dni od daty otrzymania wezwania do jego uzupełnienia. W przypadku niedostarczenia uzupełnionego wniosku w wymaganym terminie, OSP odrzuca przedłożony wniosek.

2.3.5.4.1.6. Informację o odrzuceniu wniosku o zawarcie umowy przesyłania, w zakresie wymiany międzywyjściowej wraz z podaniem przyczyny OSP przekazuje wnioskodawcy w formie pisemnej.

2.3.5.4.1.7. Przyjęcie przez OSP wniosku o zawarcie umowy przesyłania, w zakresie wymiany międzywyjściowej stanowi podstawę do określenia możliwości i warunków udziału wnioskodawcy w wymianie międzywyjściowej i przygotowania dla wnioskodawcy projektu aneksu do zawartej pomiędzy stronami umowy przesyłania lub przygotowania projektu nowej umowy przesyłania.

2.3.5.4.1.8. Podmiot składający wniosek o zawarcie umowy przesyłania, w zakresie wymiany międzywyjściowej jest zobowiązany niezwłocznie powiadomić OSP o jakichkolwiek zmianach zaistniałych w danych i dokumentach zawartych w przedłożonym wniosku oraz do ponownego przedłożenie danych i dokumentów, które uległy zmianie. Powyższy obowiązek dotyczy zmian, które zaistnieją w okresie od daty złożenia przez wnioskodawcę wniosku o zawarcie umowy przesyłania, w zakresie wymiany międzywyjściowej do daty zawarcia z tym wnioskodawcą aneksu do istniejącej umowy przesyłania lub zawarcia nowej umowy przesyłania.

2.3.5.4.2. Kod identyfikacyjny EIC i warunki jego posiadania

2.3.5.4.2.1. Każdy podmiot ubiegający się o uczestnictwo w wymianie międzywyjściowej jest zobowiązany do posiadania kodu identyfikacyjnego EIC (ENTSO-E Identification Code), nadanego przez uprawnione biuro kodów EIC.

2.3.5.4.2.2. Kody EIC są wykorzystywane w wymianie międzywyjściowej do identyfikacji każdego uczestnika wymiany międzywyjściowej i partnerów
handlowych tego uczestnika.

2.3.5.4.2.3. Podmiot, który nie posiada kodu identyfikacyjnego EIC jest zobowiązany wystąpić z wnioskiem o nadanie kodu identyfikacyjnego EIC do jednego z uprawnionych biur kodów EIC.

2.3.5.4.2.4. Kody EIC nadawane są przez biuro kodów ENTSO-E lub przez lokalne biura kodów EIC zlokalizowane w poszczególnych krajach. Na terenie Rzeczypospolitej Polskiej lokalne Biuro Kodów EIC prowadzone jest przez OSP.

2.3.5.4.2.5. Podmiot ubiegający się o nadanie kodu EIC przez polskie Biuro Kodów EIC jest zobowiązany złożyć wniosek o nadanie kodu identyfikacyjnego EIC na adres polskiego Biura Kodów EIC. Dane teleadresowe polskiego Biura Kodów EIC OSP publikuje na swojej stronie internetowej.

2.3.5.4.2.6. Podmiot, który posiada kod identyfikacyjny EIC nadany przez uprawnione biuro kodów EIC w innym kraju, jest zobowiązany poinformować o tym fakcie polskie Biuro Kodów EIC, które wprowadza dane podmiotu i jego kod identyfikacyjny EIC do bazy danych.

2.3.5.4.2.7. Wzór wniosku o nadanie kodu identyfikacyjnego EIC oraz wykaz kodów EIC nadanych przez polskie Biuro Kodów EIC, OSP publikuje na swojej stronie internetowej.

2.3.5.4.2.8. OSP po otrzymaniu wniosku o nadanie kodu identyfikacyjnego EIC dokonuje jego weryfikacji pod względem kompletności i aktualności zawartych w nim danych. OSP rozpatruje wniosek w terminie 14 dni od daty jego otrzymania. Po rozpatrzeniu wniosku, OSP niezwłocznie przekazuje wnioskodawcy informację o jego przyjęciu lub odrzuceniu albo wzywa wnioskodawcę do jego uzupełnienia.

2.3.5.4.2.9. OSP wzywa wnioskodawcę do uzupełnienia wniosku o nadanie kodu identyfikacyjnego EIC w przypadku braku niezbędnych danych lub ich niekompletności. Wnioskodawca powinien dostarczyć uzupełniony wniosek w terminie 14 dni od daty otrzymania wezwania do jego uzupełnienia. W przypadku niedostarczenia uzupełnionego wniosku w wymaganym terminie, OSP odrzuca przedłożony wniosek.

2.3.5.4.2.10. Informację o odrzuceniu wniosku o nadanie kodu identyfikacyjnego EIC wraz z podaniem przyczyny OSP przekazuje wnioskodawcy w formie pisemnej.

2.3.5.4.2.11. OSP odrzuca wniosek o nadanie kodu identyfikacyjnego EIC sporządzony niezgodnie z wzorem wniosku publikowanym na stronie internetowej OSP.

2.3.5.5. Procedura rozliczeń z tytułu świadczonych przez OSP usług przesyłania i usługi udostępniania KSE

2.3.5.5.1. Postanowienia ogólne

2.3.5.5.1.1. Użytkownicy systemu wnoszą do OSP opłatę, za świadczone przez OSP usługi przesyłania.

2.3.5.5.1.2. Opłata, za świadczone przez OSP usługi przesyłania, naliczana jest zgodnie z
Taryfę OSP, zatwierdzoną przez Prezesa URE.

2.3.5.5.1.3. OSD, jak również odbiorcy końcowi przyłączeni bezpośrednio do sieci przesyłowej, za świadczoną przez OSP usługę udostępniania KSE, wnoszą do OSP opłatę przejściową.

2.3.5.5.1.4. Poszczególne składniki opłaty za świadczoną przez OSP usługę udostępniania KSE, naliczane są według stawek opłaty przejściowej kalkulowanych i opublikowanych przez Prezesa URE, w Biuletynie Urzędu Regulacji Energetyki. Stawki opłaty przejściowej zawarte w Taryfie OSP wynikają z postanowień ustawy KDT.

2.3.5.5.2. Okresy rozliczeniowe oraz przekazywanie i odbiór dokumentów rozliczeniowych

2.3.5.5.2.1. Rozliczenia za świadczone przez OSP usługi przesyłania, przeprowadza się w okresach rozliczeniowych ustalonych w Taryfie OSP.

2.3.5.5.2.2. Dokumenty rozliczeniowe wysyłane są do użytkownika systemu listem poleconym za potwierdzeniem odbioru na adres wskazany w umowie przesyłania zawartej pomiędzy OSP a użytkownikiem systemu, i o ile tak stanowi umowa przesyłania, wysyłane faksem na numer wskazany w umowie przesyłania.

2.3.5.5.2.3. Dokumenty rozliczeniowe z tytułu świadczonej przez OSP usługi udostępniania KSE, wysyłane są do użytkownika systemu listem poleconym za potwierdzeniem odbioru na adres wskazany w umowie przesyłania albo umowie udostępniania KSE, zawartej pomiędzy OSP a użytkownikiem systemu, i o ile tak stanowi umowa przesyłania albo umowa udostępniania KSE, wysyłane faksem na numer wskazany w umowie przesyłania albo umowie udostępniania KSE.

2.3.5.5.3. Sposób i terminy dokonywania płatności

2.3.5.5.3.1. Należności OSP za świadczone usługi przesyłania, oraz należności OSP za świadczoną usługę udostępniania KSE, wynikające z faktur VAT oraz faktur korygujących VAT, płatne są przez użytkownika systemu przelewem na rachunek bankowy (rachunki bankowe) OSP wskazany(e) na fakturach. Kwoty wynikające z faktur korygujących VAT należne użytkownikowi systemu płatne są przez OSP przelewem na rachunek bankowy (rachunki bankowe) wskazany przez użytkownika systemu.

2.3.5.5.3.2. Płatności należności, za świadczone usługi przesyłania, wynikające z faktur VAT oraz faktur korygujących VAT, są dokonywane w terminie 14 dni od daty wystawienia odpowiednio faktury VAT lub faktury korygującej VAT.

2.3.5.5.3.3. Płatności należności za świadczoną przez OSP usługę udostępniania KSE, wynikające z faktur VAT są dokonywane w terminie do 21-go dnia miesiąca następującego po okresie rozliczeniowym, natomiast wynikające z faktur korygujących VAT są dokonywane w następujący sposób:

(1) należności wynikające z faktur korygujących VAT wystawionych do 7-go dnia danego miesiąca są płatne do 21-go dnia danego miesiąca;
(2) należności wynikające z faktur korygujących VAT wystawionych od 8-go do ostatniego dnia danego miesiąca są płatne do 21-go dnia następnego miesiąca.

2.3.5.5.3.4. Datą zapłaty należności jest data uznania rachunku bankowego OSP w przypadku płatności na rzecz OSP oraz odpowiednio data uznania rachunku bankowego użytkownika systemu w przypadku płatności na rzecz użytkownika systemu.

2.3.5.5.3.5. Każda dokonywana płatność jest zaliczana na poczet najstarszych należności, w tym w pierwszej kolejności na odsetki naliczane zgodnie z powszechnie obowiązującymi przepisami.

2.3.5.5.4. Przekroczenie terminu płatności

2.3.5.5.4.1. Nieterminowe regulowanie należności powoduje naliczanie odsetek za każdy dzień opóźnienia zgodnie z powszechnie obowiązującymi przepisami.

2.3.5.5.4.2. Kwota naliczonych odsetek, o których mowa w pkt 2.3.5.5.4.1, jest płatna na podstawie noty odsetkowej, na rachunek bankowy wskazany w nocie odsetkowej, w terminie 7 dni od daty jej wystawienia.

2.3.5.5.4.3. OSP ma prawo wstrzymać dostarczanie energii elektrycznej, jak również rozwiązać umowę przesyłania z zachowaniem jednomiesięcznego okresu wypowiedzenia w przypadku, gdy użytkownik systemu zwaleta z zapłaty należności za świadczone usługi przesyłania lub usługę udostępniania KSE, co najmniej miesiąc po upływie terminu płatności, pomimo uprzedniego powiadomienia na piśmie o zamiarze wypowiedzenia umowy i wyznaczenia dodatkowego, dwutygodniowego terminu do zapłaty zaległych i bieżących należności.

2.3.5.5.4.4. Wypowiedzenie umowy przesyłania lub umowy udostępniania KSE nie zwalnia stron z obowiązku zapłaty wszystkich należności wynikających z tych umów wraz z odsetkami za opóźnienie.

2.3.5.5.5. Reklamacje

2.3.5.5.5.1. Reklamacje dotyczące dokumentów rozliczeniowych przekazanych użytkownikowi systemu za usługi przesyłania oraz usługę udostępniania KSE świadczone przez OSP, użytkownik systemu zobowiązany jest zgłosić najpóźniej w terminie 14 dni roboczych od daty otrzymania tych dokumentów.

2.3.5.5.5.2. Reklamacje, użytkownik systemu, wnosi w formie pisemnej i przesyła pocztą na adres:

PSE S.A.
Departament Przesyłu
ul. Warszawska 165
05 - 520 Konstancin - Jeziorna

Reklamacje, użytkownik systemu, dodatkowo może również przesłać faksem pod numer:
(+48 22) 242 2192.
2.3.5.5.5.3. W przypadku zmiany danych teleadresowych, o których mowa w pkt 2.3.5.5.5.2, do czasu ich aktualizacji poprzez zmianę IRiESP, OSP przesła użytkownikowi systemu na piśmie zaktualizowane dane, na które należy przesyłać reklamacje.

2.3.5.5.5.4. OSP rozpatruje reklamacje w terminie 14 dni roboczych od daty jej otrzymania.

2.3.5.5.5.5. W przypadku uznania reklamacji, OSP wystawi w terminie 7 dni od daty uznania reklamacji fakturę korygującą VAT, a ewentualna nadpłata zostanie zaliczona na poczet przyszłych należności OSP i rozliczona w kolejnym okresie rozliczeniowym, o ile użytkownik systemu nie zażąda jej zwrotu.

2.3.6. Standardy jakościowe obsługi użytkowników systemu

2.3.6.1. OSP świadczy usługi przesyłania na zasadzie równoprawnego traktowania wszystkich użytkowników systemu.

2.3.6.2. W celu realizacji powyższego obowiązku OSP w szczególności:
(1) opracowuje i udostępnia wzory wniosków i standardy umów oraz IRiESP;
(2) publikuje na swojej stronie internetowej informacje, których obowiązek publikacji wynika z powszechnie obowiązujących przepisów, decyzji administracyjnych i IRiESP.

2.3.6.3. OSP zapewnia ochronę informacji zgodnie z pkt 5.3.

2.3.6.4. OSP potwierdza ilości energii elektrycznej niezbędnej do uzyskania świadectw pochodzenia w rozumieniu ustawy Prawo energetyczne, pochodzącej ze źródeł energii przedsiębiorstw energetycznych przyłączonych do sieci przesyłowej.

2.3.6.5. OSP, na pisemny wniosek odbiorcy, po rozpatrzeniu i uznaniu jego zasadności, udziela bonifikacji za nie dotrzymanie parametrów jakościowych energii elektrycznej oraz standardów jakościowych obsługi użytkowników systemu zgodnie z obowiązującymi przepisami oraz Taryfą OSP.

2.3.6.6. W ramach standardów jakościowych obsługi użytkowników systemu, OSP stosuje następujące standardy jakościowe obsługi odbiorców:
(1) przyjmuje od odbiorców przez całą dobę zgłoszenia i reklamacje dotyczące dostarczania energii elektrycznej z sieci przesyłowej;
(2) bezzwłocznie przystępuje do usuwania zakłóceń w dostarczaniu energii elektrycznej spowodowanych nieprawidłową pracą sieci przesyłowej;
(3) udziela odbiorcom, na ich żądanie, informacji o przewidywanym terminie wznowienia dostarczania energii elektrycznej przerwanego z powodu awarii w sieci przesyłowej;
(4) z zastrzeżeniem postanowień pkt 4.3.6.11, powiadamia z co najmniej pięciomiesięcznym wyprzedzeniem, o terminach i czasie planowanych przerw w dostarczaniu energii elektrycznej odbiorców zasilanych z sieci.
przesyłowej, w sposób, o którym mowa w pkt 5.1.1;

(5) OSP informuje użytkowników systemu przyłączonych do sieci przesyłowej, z co najmniej:

(5.1) tygodniowym wyprzedzeniem o zamierzonej zmianie nastawień w automatyce zabezpieczeniowej i innych parametrach mających wpływ na współpracę ruchową z siecią przesyłową;

(5.2) trzyletnim wyprzedzeniem, o konieczności dostosowania przez użytkowników systemu urządzeń i instalacji do zmienionego napięcia znamionowego, podwyższonego poziomu prądów zwarcia lub zmianie innych warunków funkcjonowania sieci przesyłowej;

(6) odpłatnie podejmuje stosowne czynności w sieci przesyłowej w celu umożliwienia bezpiecznego wykonania, przez odbiorcę lub inny podmiot, prac w obszarze oddziaływania tej sieci;

(7) nieodpłatnie udziela informacji w sprawie zasad rozliczeń oraz Taryfy OSP;

(8) rozpatruje wnioski lub reklamacje odbiorcy w sprawie rozliczeń i udziela odpowiedzi na zasadach określonych w pkt 2.3.5.5.5 niniejszej części IRiESP oraz na zasadach określonych w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi;

(9) na wniosek odbiorcy, OSP w terminie 14 dni od zakończenia stosownych kontroli i pomiarów, dokonuje sprawdzenia dotrzymania parametrów jakościowych energii elektrycznej dostarczanej z sieci przesyłowej.
3. PLANOWANIE ROZWOJU I WSPÓŁPRACA W CELU SKOORDYNOWANIA ROZWOJU SIECI PRZESYŁOWEJ I SIECI DYSTRYBUCYJNEJ 110 KV

3.1. Postanowienia ogólne

3.1.1. OSP opracowuje plan rozwoju w zakresie zaspokojenia obecnego i przyszłego zapotrzebowania na energię elektryczną (dalej „plan rozwoju”), oraz współpracuje z OSD w celu skoordynowania rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV.

3.1.2. Plan rozwoju obejmuje zakres określony w ustawie Prawo energetyczne. Projekt planu rozwoju podlega uzgodnieniu z Prezesem URE.

3.1.3. Plan rozwoju uwzględnia cele i zadania wynikające z polityki energetycznej państwa.

3.1.4. OSP sporządza plan rozwoju na okresy nie krótsze niż 5 lat oraz sporządza prognozy dotyczące stanu bezpieczeństwa dostaw energii elektrycznej na okresy nie krótsze niż 15 lat.

OSP dokonuje oceny realizacji planu rozwoju co 3 lata. Projekt aktualizacji planu rozwoju podlega uzgodnieniu z Prezesem URE.

3.1.5. Podstawą opracowania planu rozwoju są:

1. polityka energetyczna państwa i Unii Europejskiej oraz dokumenty z nimi związane,
2. wymagania w zakresie długoterminowej zdolności do pokrycia zapotrzebowania na moc i energię elektryczną oraz bezpieczeństwa pracy sieci elektroenergetycznej,
3. prognozy zapotrzebowania na moc i energię elektryczną na poziomie kraju, w układzie obszarowym i węzłowym,
4. potrzeby w zakresie rozwoju połączeń międzysystemowych,
5. plany budowy, modernizacji i wycofań z eksploatacji źródeł wytwórczych, w tym źródeł rozproszonych i odnawialnych źródeł energii,
6. prognozy dotyczące przedsięwzięć racjonalizujących zużycie energii elektrycznej,
7. wydane warunki przyłączenia i podpisane umowy o przyłączenie.

3.1.6. Plan rozwoju stanowi podstawę do opracowania średniookresowego siedmiioletniego planu zamierzeń inwestycyjnych, o którym mowa w pkt 4.1.1.2 (1).

3.1.7. W ramach opracowywania planu rozwoju, OSP współpracuje z:
3.1.8. W ramach opracowania planu rozwoju, OSP wykonuje niezbędne prace analityczne w zakresie sektora wytwarzania energii elektrycznej oraz rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV.

3.1.9. W zakresie rozwoju połączeń międzysystemowych planowanie rozwoju sieci przesyłowej podlega odrębnym uzgodnieniom z operatorami systemów przesyłowych krajów sąsiednich.

3.1.10. Sprawozdanie z realizacji planu rozwoju przedkładane jest Prezesowi URE corocznie do dnia 1 marca.

3.1.11. Na podstawie planu rozwoju przygotowywane są informacje dla ministra właściwego do spraw gospodarki wykorzystywane w opracowaniu sprawozdania z wyników monitorowania bezpieczeństwa dostaw energii elektrycznej.

Informacje ww. przygotowywane są co 2 lata i przekazywane w terminie do dnia 31 marca.

3.1.12. Współpraca pomiędzy OSP a OSD, o której mowa w pkt I.A.4 IRiESP – Część ogólna, w zakresie określonym postanowieniami pkt 3 niniejszej części IRiESP, realizowana jest według zasad określonych w pkt 2.2.1.4.12 (1) - (3) niniejszej części IRiESP.

3.2. Proces planowania rozwoju i współpraca w celu skoordynowania rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV

3.2.1. Współpraca z podmiotami wymienionymi w pkt 3.1.7 w celu skoordynowania rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV dotyczy w szczególności:

(1) pozyskania przez OSP danych i informacji niezbędnych do opracowania planu rozwoju w zakresie zaspokojenia obecnego i przyszłego zapotrzebowania na moc i energię elektryczną,

(2) udostępnienia wyników przeprowadzonych przez OSP prac analitycznych w procesie planowania.

3.2.2. Współpraca OSP z OSD w celu skoordynowania rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV, poza działaniami wymienionymi w pkt 3.2.1, obejmuje:
(1) pisemne opiniowanie przez OSP założeń przyjmowanych przez OSD w planowaniu rozwoju sieci dystrybucyjnej 110 kV,

(2) uzgadnianie przez OSD i OSP planowanych przedsięwzięć rozwojowych w sieci dystrybucyjnej 110 kV, które wymagają skoordynowanych działań inwestycyjnych w sieci przesyłowej i sieci dystrybucyjnej 110 kV,

(3) współdziałanie w zakresie wykonywania analiz.

3.2.3. Dane i informacje pozyskiwane przez OSP w ramach procesu planowania rozwoju i współpracy w celu skoordynowania rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV dotyczą:

(1) stanu istniejącego w dacie ich przekazania do OSP, lub okresu ubiegłego roku,

(2) stanu prognozowanego dla przyjętego 15-letniego okresu planowania lub okresów krótszych, określonych przez OSP.

3.2.4. Zakres danych i informacji pozyskiwanych przez OSP w ramach procesu planowania rozwoju i współpracy w celu skoordynowania rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV, określa pkt 3.3.

3.2.5. Dane i informacje wymienione w pkt 3.3 są przekazywane obligatoryjnie przez podmioty współpracujące z OSP corocznie, w terminie do dnia 1 marca.

3.2.6. Dane i informacje określone w pkt 3.3 są przekazywane:

(1) przy wykorzystaniu aktywnych formularzy internetowych w systemie Pozyskiwania i Aktualizacji Danych Rozwojowych (dalej „PADR”),

(2) w postaci tabel w formacie Excel, których wzory opracowuje OSP i publikuje na swojej stronie internetowej. Dane te w postaci elektronicznej są przekazywane pocztą email lub listownie.

O wyborze sposobu przekazywania danych, łącznie z wymaganymi instrukcjami obsługi, każdy z podmiotów określony w pkt 3.2.7 zostanie powiadomiony przez OSP indywidualnie.

3.2.7. Zakres danych pozyskiwanych od poszczególnych podmiotów jest następujący:

(1) OSD przekazują dane i informacje wymienione w pkt 3.3.1 i 3.3.2,

(2) wyтворcy przyłączeni do sieci przesyłowej przekazują dane i informacje wymienione w pkt 3.3.3, 3.3.4 i 3.3.5,

(3) odbiorcy końcowi przyłączeni do sieci przesyłowej przekazują dane i informacje wymienione w pkt 3.3.6 i 3.3.7.

3.2.8. W ramach procesu przygotowywania planu rozwoju, OSP wykorzystuje również dane wymienione w pkt 2.1.1.3.

3.2.9. Zakres publikowanych i udostępnianych przez OSP wyników przeprowadzonych prac analitycznych dotyczących planowania rozwoju
3.2.10. OSP opiniuje założenia przyjmowane przez OSD w planowaniu rozwoju sieci dystrybucyjnej 110 kV, w terminie jednego miesiąca od ich otrzymania.

3.2.11. OSP i OSD współpracują w zakresie uzgadniania planu przedsięwzięć inwestycyjnych w sieci dystrybucyjnej 110 kV. Współpraca jest realizowana w formie i trybie indywidualnie ustalonym pomiędzy OSP i OSD.

3.3. Zakres pozyskiwania i aktualizacji danych i informacji

3.3.1. OSD przekazują do OSP dane i informacje dotyczące stanu istniejącego, opisujące podmioty przyłączone do sieci dystrybucyjnej, obejmujące:

1. schematy, plany i konfigurację sieci dystrybucyjnej 110 kV,
2. godzinowe wartości obciążeń dla obszaru działania OSD,
3. zużycie energii elektrycznej w podziale na grupy odbiorców końcowych i straty,
4. obciążenia szczytowe dla obszaru działania OSD i straty,
5. kwartalne bilanse mocy dla obszaru działania OSD,
6. dane dotyczące realizowanych programów zarządzania popytem, zgodnie z pkt 3.3.12,
7. dane konwencjonalnych jednostek wytwórczych, przyłączonych do sieci dystrybucyjnej 110 kV, zgodnie z pkt 3.3.8, z wyłączeniem wytwórców, których jednostki przyłączone są jednocześnie do sieci dystrybucyjnej i przesyłowej, w tym wytwórców wchodzących w skład grup kapitałowych, których jednostki przyłączone są jednocześnie do sieci dystrybucyjnej i przesyłowej,
8. dane dotyczące wytwórców przemysłowych i rozproszonych, według wykorzystywanych paliw, zgodnie z pkt 3.3.10,
9. dane dotyczące odnawialnych źródeł energii, według rodzaju źródeł, zgodnie z pkt 3.3.11.

Definicje stosowanych pojęć oraz sposób wypełniania formularzy, o których mowa w pkt 3.2.6, zawierają instrukcje ich obsługi.

3.3.2. OSD przekazują do OSP dane i informacje dotyczące stanu prognozowanego, opisujące warunki pracy instalacji lub sieci podmiotów przyłączonych do sieci dystrybucyjnej 110 kV, dla każdego roku okresu planistycznego, obejmujące:

1. zapotrzebowanie na energię elektryczną w podziale na grupy odbiorców końcowych i straty,
2. zapotrzebowanie szczytowe na moc w podziale na grupy odbiorców końcowych i straty,
(3) krzywe obciążeń w wybranych dobach reprezentatywnych,

(4) informacje o projektach programów zarządzania popytem, zgodnie z pkt 3.3.12,

(5) dane konwencjonalnych jednostek wytwórczych przyłączonych do sieci dystrybucyjnej 110 kV zgodnie z pkt 3.3.8 z wyłączeniem wytwórców, których jednostki przyłączone są jednocześnie do sieci dystrybucyjnej i przesyłowej, w tym wytwórców wchodzących w skład grup kapitałowych, których jednostki przyłączone są jednocześnie do sieci dystrybucyjnej i przesyłowej,

(6) dane dotyczące wytwórców przemysłowych i rozproszonych, według wykorzystywanych paliw, zgodnie z pkt 3.3.10 (dane opracowywane wyłącznie dla roku 5, 10 i 15 okresu planowania w odniesieniu do ostatniego roku statystycznego),

(7) dane dotyczące odnawialnych źródeł energii, według rodzaju źródeł, zgodnie z pkt 3.3.11 (dane opracowywane wyłącznie dla roku 5, 10 i 15 okresu planowania w odniesieniu do ostatniego roku statystycznego),

(8) dane o stacjach elektroenergetycznych o napięciu 110 kV, zgodnie z pkt 3.3.14,

(9) dane o liniach elektroenergetycznych o napięciu 110 kV, zgodnie z pkt 3.3.15,

(10) wskazanie obszarów, w których jest uzasadnione zlokalizowanie nowych jednostek wytwórczych, wraz z określeniem ich pożądaną mocy,

(11) wskazanie obszarów, w których jest uzasadnione zlokalizowanie nowych punktów przyłączenia do sieci przesyłowej.

Definicje stosowanych pojęć oraz sposób wypełniania formularzy, o których mowa w pkt 3.2.6, zawierają instrukcje ich obsługi.

3.3.3. Wytwórcy posiadający konwencjonalne jednostki wytwórcze przyłączone do sieci przesyłowej przekazują do OSP następujące dane i informacje dotyczące stanu istniejącego, opisujące swoje urządzenia i instalacje:

(1) schematy główne układów elektrycznych na napięciu 110 kV,

(2) dane o posiadanych jednostkach wytwórczych, zgodnie z pkt 3.3.8.

3.3.4. W przypadku budowy nowych jednostek, modernizacji istniejących lub rozbudowy o instalacje proekologiczne, wytwórcy posiadający konwencjonalne jednostki wytwórcze przyłączone do sieci przesyłowej przekazują do OSP dane i informacje dotyczące stanu prognozowanego opisujące warunki pracy jednostek wytwórczych, zgodnie z pkt 3.3.8.

3.3.5. Wytwórcy posiadający jednostki przyłączone do sieci przesyłowej, należące do odnawialnych źródeł energii, przekazują do OSP dane i informacje według rodzajów źródeł dotyczące stanu istniejącego i prognozowanego, zgodnie z pkt 3.3.11.
3.3.6. Odbiorcy końcowi przyłączeni do sieci przesyłowej przekazują do OSP, dane i informacje dotyczące stanu istniejącego, zawierające:

(1) zużycie energii elektrycznej,
(2) obciążenie szczytowe,
(3) krzywe obciążeni w wybranych dobach reprezentatywnych,
(4) dane programów zarządzania popytem, zgodnie z pkt 3.3.12,
(5) dane o posiadanych jednostkach wytwórczych, zgodnie z pkt 3.3.9.

3.3.7. Odbiorcy końcowi przyłączeni do sieci przesyłowej przekazują do OSP, dla każdego roku okresu planistycznego, dane i informacje dotyczące stanu prognozowanego zawierające:

(1) zapotrzebowanie na energię elektryczną,
(2) zapotrzebowanie szczytowe na moc elektryczną,
(3) krzywe obciążen w wybranych dobach reprezentatywnych,
(4) dane programów zarządzania popytem, zgodnie pkt 3.3.12,
(5) w przypadku budowy nowych jednostek, modernizacji istniejących lub rozbudowy o instalacje proekologiczne dane dotyczące stanu prognozowanego jednostek wytwórczych, zgodnie z pkt 3.3.9.

3.3.8. Dane i informacje dotyczące stanu istniejącego i prognozowanego jednostek wytwórczych, przyłączonych do sieci przesyłowej lub dystrybucyjnej 110 kV, obejmują:

(1) nazwę wężła i napięcie przyłączenia,
(2) moc osiągalną,
(3) sprawność przemiany energetycznej,
(4) wskaźnik zużycia energii elektrycznej na potrzeby własne jednostek wytwórczych,
(5) wskaźnik odstawień awaryjnych,
(6) liczbę dni remontów planowych,
(7) produkcję energii elektrycznej,
(8) parametry jakościowe paliwa (QAS) wraz z jego zużyciem,
(9) emisje zanieczyszczeń SO₂, NOₓ, pyły i CO₂,
(10) stosowane instalacje ochrony środowiska (wraz z ich sprawnością),
(11) informacje o charakterze sensytywnym, zgodnie z pkt 3.3.13;

oraz dla jednostek wytwórczych nowych, modernizowanych lub wyposażonych w instalacje proekologiczne:

(12) opis przedsięwzięcia,
(13) okres realizacji przedsięwzięcia i rok uruchomienia jednostki wytwórczej,
(14) przewidywany okres eksploatacji jednostki wytwórczej.

3.3.9. Dane i informacje dotyczące stanu istniejącego i prognozowanego jednostek wytwórczych u odbiorców końcowych przyłączonych do sieci przesyłowej, obejmują:
(1) moc osiągalną,
(2) sprawność przemiany energetycznej,
(3) produkcję energii elektrycznej,
(4) zużycie oraz parametry jakościowe paliwa (QAS),
(5) emisje zanieczyszczeń SO₂, NOₓ, pyły i CO₂.

3.3.10. Dane i informacje zbiorcze dotyczące stanu istniejącego i prognozowanego, w zakresie wytwórców przemysłowych i rozproszonych przyłączonych do sieci o napięciu 110 kV lub niższym, obejmują:
(1) moc osiągalną,
(2) produkcję energii elektrycznej,
(3) emisje zanieczyszczeń SO₂, NOₓ, pyły i CO₂.
Na wniosek OSP wytwórca ma obowiązek dostarczyć także dane podstawowe w zakresie wymienionym w pkt 2.1.1.3.5 oraz dodatkowe informacje niezbędne do przeprowadzenia analiz systemowych, o których mowa w pkt 2.1.3.1.5.

3.3.11. Dane i informacje zbiorcze dotyczące stanu istniejącego, w zakresie odnawialnych źródeł energii przyłączonych do sieci przesyłowej, o napięciu 110 kV lub niższym, obejmują:
(1) moc osiągalną,
(2) produkcję energii elektrycznej.

3.3.12. Dane i informacje dotyczące stanu istniejącego i prognozowanego w zakresie programów zarządzania popytem obejmują:
(1) opis i harmonogram realizacji projektu,
(2) oszczędności w zakresie mocy i energii elektrycznej z tytułu realizacji projektu.

3.3.13. Wytwórcy posiadający jednostki przyłączone do sieci przesyłowej lub dystrybucyjnej o napięciu 110 kV przekazują informacje ekonomiczne obejmujące:
(1) jednostkowe średnioroczne koszty stałe pracy jednostek wytwórczych,
(2) jednostkowe średnioroczne koszty zmienne pozapaliwowe pracy jednostek wytwórczych,
(3) jednostkowe średnioroczne koszty paliwowe,
(4) nakłady inwestycyjne (związane wyłącznie z budową nowych jednostek wytwórczych, modernizacją lub rozbudową jednostek o instalacje proekologiczne).

3.3.14. Dane i informacje dotyczące stanu prognozowanego stacji elektroenergetycznych o napięciu 110 kV obejmują:
(1) nazwę stacji elektroenergetycznej (węzła),
(2) schemat i układ pracy,
(3) moc znamionową transformatorów, dławików i baterii kondensatorów planowanych do wyposażenia stacji elektroenergetycznej,
(4) zapotrzebowanie na moc czynną i bierną w charakterystycznych godzinach pomiarowych (szczyt i dolina roczna w kolejnych latach okresu planowania),
(5) roczne zapotrzebowanie na energię elektryczną w kolejnych latach okresu planowania.

3.3.15. Dane i informacje dotyczące stanu prognozowanego linii elektroenergetycznych o napięciu 110 kV obejmują:
(1) nazwę węzła początkowego i końcowego, długość linii elektroenergetycznej,
(2) typ przewodu i przekrój,
(3) rezystancję, reaktancję i susceptancję linii elektroenergetycznej dla składowej symetrycznej, zgodnej,
(4) reaktancję dla składowej symetrycznej zerowej,
(5) obciążalności termiczne linii elektroenergetycznej w sezonie zimowym i w sezonie letnim.

3.4. Kryteria oceny prac analitycznych w zakresie rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV

3.4.1. Informacje wstępne

3.4.1.1. W zakresie rozwoju sieci przesyłowej i sieci dystrybucyjnej 110 kV, wyróżnia się następujące rodzaje prac analitycznych:
(1) techniczne analizy systemowe niezbędne do opracowania, zaktualizowania lub uszczégorzania planu rozwoju,
(2) ekspertyzy wpływu przyłączenia urządzeń, instalacji lub sieci na KSE, o których mowa w pkt 2.2.1.2.2.1 (7).

3.4.1.2. W celu wykonania prac analitycznych OSP tworzy, w oparciu o wewnętrzną bazę danych prognoistycznych, a także dane i informacje, o których mowa w pkt 3.3, modele matematyczne sieci zamkniete odwzorowujące prognozowany stan przyszłościowy KSE.
3.4.1.3. Modele matematyczne sieci zamkniętej odwzorowujące przyszłościowy KSE tworzone są dla 15-letniego okresu planowania i obejmują następujące charakterystyczne stany obciążeń KSE: szczyt zimowy, szczyt letni, dolina letnia.

3.4.1.4. OSP wykonuje następujące prace analityczne:
1. obliczenia rozpływów mocy w sieci zamkniętej,
2. obliczenia zwarcie w sieci zamkniętej,
3. obliczenia stabilności kątowej w sieci zamkniętej.

3.4.2. Kryteria oceny prac analitycznych

3.4.2.1. Obliczenia rozpływów mocy w sieci przesyłowej i sieci dystrybucyjnej 110 kV

3.4.2.1.1. Obliczenia rozpływów mocy w sieci przesyłowej i sieci dystrybucyjnej 110 kV wykonuje się w celu identyfikacji ograniczeń sieciowych, przeciążeń elementów sieciowych i przekroczeń napięć w węzłach sieciowych, stanowiących podstawę do rozbudowy sieci zamkniętej. Obliczenia wykonuje się w normalnych i awaryjnych (zgodnie z regułą n-1) stanach pracy sieci zamkniętej.

3.4.2.1.2. Przeciążenie elementów sieciowych występuje gdy obciążenie prądowe danego elementu sieci jest wyższe od dopuszczalnego długotrwałego.

3.4.2.1.3. Przekroczenie napięć w węzłach sieciowych występuje gdy niespełnione są wymagania określone w pkt 2.1.2.2.3 - 4.

3.4.2.2. Obliczenia zwarcie w sieci przesyłowej i sieci dystrybucyjnej 110 kV

3.4.2.2.1. Obliczenia zwarcie w sieci przesyłowej i sieci dystrybucyjnej 110 kV wykonuje się w celu zbadania warunków zwarcia pracy sieci przesyłowej i sieci dystrybucyjnej 110 kV uwzględniających rekomendacje odnośnie wymaganej rozbudowy wynikającej z obliczeń rozpływów mocy w tej sieci. W ramach obliczeń zwarcia wyznaczane są moce (prądy) zwarcie maksymalne, rzeczywiste i minimalne.

3.4.2.2.2. Wyznaczenie maksymalnych mocy (prądów) zwarcia ma na celu określenie poziomu projektowego parametrów zwarcia stanowiących podstawę do doboru aparatury łączniowej. Wyznaczenie maksymalnych mocy (prądów) zwarcia wykonuje się przy uwzględnieniu wszystkich elementów sieci przesyłowej i sieci dystrybucyjnej 110 kV, generatorów o mocy zainstalowanej powyżej 10 MW zainstalowanych w KSE oraz przy zamkniętych podziałach w węzłach tej sieci.

3.4.2.2.3. Wyznaczenie rzeczywistych wartości mocy (prądów) zwarcia ma na celu ocenę spełnienia kryteriów doboru parametrów zwarcia w rzeczywistych (planowanych) układach pracy sieci przesyłowej i sieci dystrybucyjnej 110 kV. Rzeczywiste moce (prądy) zwarcie w
poszczególnych rozdzieliach nie powinny przekraczać mocy (prądów) wyłączalnych aparatury łączeniowej oraz konstrukcji wsporczych.

3.4.2.2.4. Wyznaczenie minimalnych wartości mocy (prądów) zwarcioowych ma na celu ocenę spełnienia kryterium jakości energii elektrycznej. Wyznaczenie minimalnych mocy (prądów) mocy zwarcioowych wykonuje się dla stanu obciążenia KSE odwzorowującego niski poziom zapotrzebowania na moc czynną w awaryjnym (zgodnie z regułą n-1) stanie pracy sieci przesyłowej i sieci dystrybucyjnej 110 kV. Kryterium jakości energii jest spełnione jeżeli stosunek minimalnej mocy zwarciowej do mocy znamionowej wytwarcy lub odbiorcy w miejscu przyłączenia jest większy od 20.

3.4.2.3. Obliczenia stabilności kątowej w sieci przesyłowej i sieci dystrybucyjnej 110 kV

3.4.2.3.1. Obliczenia stabilności kątowej w sieci przesyłowej i sieci dystrybucyjnej 110 kV wykonuje się w celu oceny czy rekomendowana w obliczeniach rozpływów mocy rozbudowa sieci przesyłowej i sieci dystrybucyjnej 110 kV jest adekwatna do inwestycji planowanych w sektorze wytwarzania.

3.4.2.3.2. Wymagania dotyczące zachowania stabilności kątowej elektrowni określone są w pkt 2.1.2.3.

3.4.3. Ocena wyników prac analitycznych

3.4.3.1. Techniczna analiza systemowa

3.4.3.1.1. Wyniki technicznych analiz systemowych są jednym z elementów do określania wymaganego zakresu rozbudowy sieci przesyłowej i sieci dystrybucyjnej 110 kV, mające swoje odzwierciedlenie w planach rozwoju w zakresie zaspokojenia obecnego i przyszłego zapotrzebowania na energię elektryczną, opracowywanych przez OSP i OSD.

3.4.3.1.2. Wyniki technicznych analiz systemowych uznaje się za pozytywne jeżeli układy sieciowe odwzorowujące przyszłościowy stan sieci przesyłowej i sieci dystrybucyjnej 110 kV spełniają kryteria określone w pkt 3.4.2.

3.4.3.2. Ekspertyza wpływu przyłączenia urządzeń, instalacji lub sieci na KSE

3.4.3.2.1. Wynik ekspertyzy uznać się za pozytywny, jeżeli dla przyłączenia podmiotu ubiegającego się o przyłączenie do sieci przesyłowej zaproponowany układ sieciowy spełnia kryteria określone w pkt 3.4.2.

3.4.3.2.2. Pozytywny wynik ekspertyzy jest podstawą do określenia warunków przyłączenia dla podmiotu ubiegającego się o przyłączenie do sieci.

3.4.3.2.3. W przypadku gdy warunki opisane w pkt 3.4.3.2.1 nie są spełnione, oznacza to negatywny wynik ekspertyzy, a tym samym istnieje podstawa do odmowy określenia warunków przyłączenia do sieci.
3.5. Publikacja i udostępnianie planu rozwoju i wyników analiz rozwojowych

3.5.1. OSP publikuje na swojej stronie internetowej wyciąg z planu rozwoju.

3.5.2. OSP udostępnia OSD, w zakresie właściwym dla obszaru ich działania i dla analizowanego okresu planowania, następujące wyniki analiz rozwojowych:

(1) opis planowanych do realizacji przedsięwzięć rozwojowych i modernizacyjnych w sieci przesyłowej wraz z harmonogramem ich realizacji i podstawowymi parametrami technicznymi,

(2) ocenę zidentyfikowanych zagrożeń (ograniczeń) w sieci przesyłowej i sieci dystrybucyjnej 110 kV wraz z wynikającymi z nich rekomendacjami wzmocnień sieci dystrybucyjnej 110 kV i jej sprzężeń z siacią przesyłową.

3.5.3. OSP udostępnia wytwórcom przyłączonym do sieci przesyłowej, w zakresie ich działania i dla analizowanego okresu planowania, wyniki analiz rozwojowych dotyczących zmian w możliwościach wyprowadzenia mocy z jednostek wytwórczych przyłączonych do sieci przesyłowej.

3.5.4. Dla analizowanego okresu planowania OSP udostępnia odbiorcom końcowym przyłączonym do sieci przesyłowej wyniki analiz rozwojowych dotyczących, możliwości zmian poboru mocy z sieci przesyłowej w miejscu przyłączenia odbiorcy.

3.5.5. OSP udostępnia ministrowi właściwemu do spraw gospodarki informacje niezbędne do wykonania sprawozdania z wyników monitorowania bezpieczeństwa dostaw energii elektrycznej.

3.5.6. Po pozytywnym zaopiniowaniu planu rozwoju przez organy samorządów województw OSP występuje z wnioskiem do ministra właściwego do spraw gospodarki o nadanie ważniejszym zadaniom ujętym w planie rozwoju i we wniosku statusu zadań rządowych i umieszczenie ich w programie rządowym. Wniosek zawiera listę zadań planowanych do realizacji w okresie najbliższych 5 lat.

3.5.7. Wniosek, o którym mowa w pkt 3.5.6, OSP wystosowuje w terminie do 2 miesięcy od dnia otrzymania ostatniej decyzji administracyjnej organu samorządu województwa.

3.5.8. Po pozytywnym zaopiniowaniu planu rozwoju przez organy samorządu województw OSP występuje z wnioskiem do tych organów o wprowadzenie zmian do planów zagospodarowania przestrzennego województw. Wniosek zawiera plan działań OSP w podziale na obszary województw.

3.5.9. Wniosek, o którym mowa w pkt 3.5.8, OSP wystosowuje w terminie do 2 miesięcy od dnia otrzymania decyzji administracyjnej organu samorządu województwa.
3.5.10. Po pozytywnym zaopiniowaniu planu rozwoju przez organy samorządu województw OSP występuje z wnioskiem do właściwego ministra o wprowadzenie tych zmian do Koncepcji Przestrzennego Zagospodarowania Kraju lub do Planu Zagospodarowania Przestrzennego Kraju. Wniosek zawiera plan działań OSP na obszarze kraju i w podziale na obszary województw.

3.5.11. Wniosek, o którym mowa w pkt 3.5.10, OSP wystosowuje w terminie do 2 miesięcy od dnia otrzymania decyzji administracyjnej organu samorządu województwa.

3.5.12. Udostępnienie przez OSP wyników analiz rozwojowych zgodnie z pkt 3.5.2 - 4 następuje w trybie indywidualnie ustalonym pomiędzy OSP i wskazanymi podmiotami.

3.5.13. W zakresie planu rozwoju i wyników analiz rozwojowych, o których mowa w pkt 3.5.1 - 5, publikacji i udostępnianiu nie podlegają informacje niejawne lub inne informacje prawnie chronione.
4. ROZBUDOWA, EKSPLOATAJCJA I PROWADZENIE RUCHU SIECIOWEGO

4.1. Rozbudowa i modernizacja sieci przesyłowej

4.1.1. Zasady planowania przedsiewzięć inwestycyjnych

4.1.1.1. OSP sporządza projekty planów inwestycji rzeczowych w zakresie eksploatowanej przez siebie sieci przesyłowej.

4.1.1.2. OSP sporządza dwa plany inwestycji rzeczowych w majątkie sieci przesyłowej:

 (1) pięcioletni Plan Zamierzeń Inwestycyjnych,
 (2) plan roczny (dalej „operacyjny plan inwestycji”).

4.1.1.3. Plan Zamierzeń Inwestycyjnych opracowywany jest wg zasady planowania kroczego tzn. corocznie opracowywany jest plan na okres następnych 5 lat.

4.1.1.4. Plan Zamierzeń Inwestycyjnych składa się z następujących części:

 (1) ogólnej,
 (2) wykazu zadań inwestycyjnych kontynuowanych i nowo rozpocznymych,
 (3) informacji o zamierzeniach inwestycyjnych.

4.1.1.5. Operacyjne plany inwestycji opracowywane są każdego roku dla następnego roku.

4.1.1.6. Operacyjny plan inwestycji składa się z następujących części:

 (1) ogólnej,
 (2) wykazu zadań i zamierzeń inwestycyjnych kontynuowanych i nowo rozpocznymych,
 (3) informacji o wszystkich zadaniach i zamierzeniach inwestycyjnych,
 (4) uwarunkowań realizacji operacyjnego planu inwestycji w planowanym zakresie.

4.1.2. Zasady przyjmowania do eksploatacji obiektów, układów, urządzeń i instalacji

4.1.2.1. Warunki przyjęcia do eksploatacji

4.1.2.1.1. OSP przyjmuje do eksploatacji obiekty, układy, urządzenia i instalacje sieci przesyłowej po przeprowadzeniu odbioru technicznego.

4.1.2.1.2. Odbiorowi technicznemu podlegają obiekty, układy, urządzenia i instalacje sieci przesyłowej wybudowane, po przebudowie, remoncie lub po
wykonanym zabiegu eksploatacyjnym, o ile taki odbiór jest uzasadniony względami, o których mowa w pkt 4.1.2.1.3.

4.1.2.1.3. Odbiór techniczny polega na stwierdzeniu pozytywnych wyników prób i pomiarów oraz stwierdzeniu spełniania warunków określonych m.in. w:

(1) pkt 2.1.2 w zakresie wymagań dotyczących jakości i niezawodności pracy sieci zamkniętej,
(2) pkt 2.2.3 w zakresie wymagań technicznych dla urządzeń, instalacji i sieci wraz z niezbędną infrastrukturą pomocniczą,
(3) publikowanych przez OSP standardach technicznych OSP stosowanych w sieci przesyłowej,
(4) „Instrukcji organizacji i wykonywania prac eksploatacyjnych na liniach i stacjach NN”, o której mowa w pkt 4.2.1.2 (1),
(5) przepisach BHP, prawa budowlanego, o ochronie środowiska, o ochronie przeciwpogrzebowej i przeciwporażeniowej, o dozorze technicznym oraz normach,
(6) szczegółowych instrukcjach eksploatacji obiektów,
(7) dokumentacji projektowej, fabrycznej i odbiorczej,
(8) zawartych umowach.

4.1.2.1.4. OSP zapewnia dostosowanie eksploatowanych układów i urządzeń zainstalowanych w sieci przesyłowej do aktualnych warunków zwarciowych, napięciowych i obciążeniowych.

4.1.2.2. Zasady organizacji i prowadzenia odbiorów

4.1.2.2.1. Odbiory w sieci przesyłowej przeprowadzane są zgodnie z procedurą ustaloną przez OSP.

4.1.2.2.2. W celu przeprowadzenia odbioru technicznego OSP powołuje Komisję Odbioru.

4.1.2.2.3. Do zadań Komisji Odbioru należy m.in.:

(1) rozpatrzenie zgłoszenia o gotowości zadania lub jego części do odbioru,
(2) ocena zgodności zakresu wykonanych prac z zatwierdzoną dokumentacją projektową i techniczną, warunkami określonymi w pkt 4.1.2.1.3 oraz umową,
(3) sprawdzenie kompletności i aktualności dokumentacji technicznej, powykonawczej i prawnnej, zweryfikowanie oświadczeń wykonawcy w zakresie zgodności przedmiotu odbioru z wymaganiami Prawa budowlanego oraz umowy,
(4) sprawdzenie jakości wykonanych robót na podstawie porównania parametrów oferowanych przez wykonawcę w tym m.in.: z wynikami oględzin zewnętrznych pomiarów i prób oraz zapisów w protokołach sprawdzeń technicznych,
(5) sprawdzenie i analizy protokołów prób, badań i pomiarów,
(6) ocena i klasyfikacja stwierdzonych usterek, wad i braków,
(7) ocena zakresu objętych zgłoszeniem niezakończonych prac,
(8) ustalenie terminów i osób/podmiotów odpowiedzialnych za usunięcie usterek, wad i braków wymienionych w pkt (6) - (7) oraz sposobu sprawdzenia ich usunięcia,
(9) potwierdzenie usunięcia usterek, wad i braków wymienionych w pkt (6) - (7),
(10) sprawdzenie aktualizacji instrukcji eksploatacji danego obiektu, w zakresie wynikającym z przedmiotu odbioru,
(11) stwierdzenie gotowości przedmiotu odbioru do przeprowadzenia prób napięciowych i obciążeniowych,
(12) przedłożenie wniosków i zaleceń.

4.1.2.2.4. Komisja Odbioru po wykonaniu czynności, o których mowa w pkt 4.1.2.2.3 sporządza protokół odbioru zawierający m.in.:
(1) opis wyników sprawdzenia warunków określonych w pkt 4.1.2.1.3,
(2) opis wyników prób i pomiarów,
(3) wynik sprawdzenia kompletności i poprawności dokumentacji prawnej, technicznej i eksploatacyjnej oraz wykazy tych dokumentacji,
(4) wykaz okresów gwarancji na urządzenia, obiekty budowlane i roboty,
(5) wniosek o przyjęcie obiektu, układu, urządzenia lub instalacji do eksploatacji - w przypadku pozytywnych wyników prób i sprawdzeń.

4.1.2.2.5. Zakres i tryb prac Komisji Odbioru dla obiektów i sieci bezpośrednio przyłączonych i przyłączanych do sieci przesyłowej określają odrębne umowy.

4.1.2.3. **Zasady przeprowadzenia ruchu próbnego przyjmowanych obiektów, układów, urządzeń i instalacji**

4.1.2.3.1. OSP określa obiekt, układy, urządzenia i instalacje sieci przesyłowej, które przed przyjęciem do eksploatacji są poddawane ruchowi próbnemu.

4.1.2.3.2. OSP określa zasady przeprowadzenia ruchu próbnego przyjmowanych obiektów, układów, urządzeń i instalacji sieci przesyłowej.

4.1.2.3.3. Obowiązki, o których mowa w pkt 4.1.2.3.1 - 2 dotyczą także podmiotów przyłączonych do sieci przesyłowej w zakresie eksploatacji przez nie urządzeń.

4.1.2.3.4. Zasady przeprowadzania ruchu próbnego dla obiektów bezpośrednio przyłączanych do sieci przesyłowej zatwierdza OSP.
4.2. Eksplotacja sieci przesyłowej

4.2.1. Zasady ogólne eksplotacji sieci przesyłowej

4.2.1.1. Eksplotacja sieci przesyłowej jest prowadzona w sposób zapewniający:

(1) utrzymanie we właściwym stanie technicznym sieci przesyłowej oraz jej połączeń z urządzeniami, instalacjami i innymi sieciami,

(2) zachowanie ciągłości, niezawodności i efektywności funkcjonowania sieci przesyłowej,

(3) zachowanie bezpieczeństwa obsługi i otoczenia,

(4) spełnianie wymagań przeciwpowarowych i ochrony środowiska.

4.2.1.2. OSP opracowuje:

(1) „Instrukcję organizacji i wykonywania prac eksplotacyjnych na liniach i stacjach NN”,

(2) szczegółowe instrukcje eksploatacji obiektów, układów, urządzeń i instalacji eksploatowanych przez OSP.

4.2.1.3. Podmioty przyłączone do sieci przesyłowej opracowują instrukcje ruchu i eksploatacji urządzeń, instalacji i sieci z uwzględnieniem warunków określonych w IRiESP.

4.2.1.4. Współpraca pomiędzy OSP a OSD, o której mowa w pkt I.A.4 IRiESP - Część ogólna, w zakresie określonym postanowieniami pkt 4.2.4.2 niniejszej części IRiESP, realizowana jest według zasad określonych w pkt 2.2.1.4.12 (1) - (3) niniejszej części IRiESP.

4.2.2. Struktura organizacyjna prowadzenia eksplotacji i rozbudowy sieci przesyłowej

4.2.2.1. OSP część zadań w zakresie eksplotacji i rozbudowy sieci przesyłowej realizuje przy współudziale działających w jego imieniu i na jego rzecz spółek obszarowych OSP. Zasady współpracy z tymi podmiotami są określone w umowach zawartych pomiędzy OSP a tymi podmiotami.

4.2.2.2. Spółki obszarowe OSP uczestniczą w prowadzeniu eksplotacji sieci przesyłowej na obszarach określonych w umowach.

4.2.2.3. Przedmiotem umów, o których mowa pkt 4.2.2.2, jest świadczenie usług zarządzania operacyjnego w obszarze majątku sieciowego

4.2.2.4. Przez pojęcie usług zarządzania operacyjnego rozumie się działanie w imieniu OSP w procesach:

(1) planowania prowadzonych usług z podejmowaniem decyzji o kierunkach alokacji środków finansowych w celu osiągnięcia zaplanowanych wskaźników,
4.2.2.5. Spółki obszarowe OSP działając w imieniu OSP uczestniczą w procesie planowania:

(1) zakresu rzeczowego i finansowego zabiegów eksploatacyjnych m.in. w oparciu o IRiESP, Dokumentację Techniczno - Ruchową (DTR) urządzeń, „Instrukcję organizacji i wykonywania prac eksploatacyjnych na liniach i stacjach NN”, wyniki diagnoistyki technicznej, ocenę stanu technicznego, przyznane środki i koszty ryzyka uszkodzenia elementu,

(2) zabiegów eksploatacyjnych w zintegrowanym planie wieloletnim,

(3) pozostałych usług świadczonych przez strony trzecie,

(4) podatków i opłat administracyjnych.

4.2.2.6. Spółki obszarowe OSP działając w imieniu OSP prowadzą:

(1) stały nadzór nad majątkiem sieci przesyłowej,

(2) przeprowadzanie ocen stanu technicznego wszystkich obiektów majątku sieciowego,

(3) eksploatację majątku sieciowego,

(4) odbiory i prace Komisji Odbiorów zgodnie z zasadami określonymi w pkt 4.1.2.2,

(5) przeprowadzanie ruchu próbnego i uruchamianie obiektów oddawanych do eksploatacji,

(6) proces przygotowywania dokumentów niezbędnych do dochodzenia przed sądami należności z tytułu szkód powstałych w majątku sieciowym i odpowiedzialności cywilnej oraz do prowadzenia egzekucji w tym zakresie,

(7) proces opracowywania oraz prowadzenia dokumentacji prawnej, majątkowej, eksploatacyjnej i technicznej, instrukcji eksploatacyjnych i stanowiskowych a także aktualizacji baz danych oprogramowania specjalistycznego,

(8) likwidację zbędnych elementów majątku sieciowego.

4.2.2.7. Spółki obszarowe OSP w ramach funkcji zarządzczych koordynują:

(1) prace realizowane na obiektach sieci przesyłowej w celu minimalizacji liczby i czasu wyłączeń,

(2) pracę urządzeń w sposób zapewniający niezawodną pracę sieci zamkniętej przy optymalizacji kosztów jej utrzymania,
(3) pod nadzorem OSP, nastawę zabezpieczeń sieci z nastawami zabezpieczeń linii i urządzeń podmiotów przyłączonych do sieci przesyłowej,

(4) w ścisłej współpracy z OSP, prace związane z likwidacją awarii i zakłóceń oraz likwidacją szkód.

4.2.2.8. Spółki obszarowe OSP w ramach funkcji zarządczych informują OSP o:

(1) zdarzeniach awaryjnych i losowych oraz o zagrożeniach wystąpienia tych zdarzeń,

(2) rzeczowej realizacji planów rocznych,

(3) dostrzeżonych ryzykach wynikających z pracy i stanu technicznego sieci przesyłowej i odpowiedzialności cywilnej.

4.2.2.9. W ramach zarządzania operacyjnego spółki obszarowe OSP są zobowiązane do:

(1) reprezentowania OSP, w ramach posiadasanych i udzielanych pełnomocnictw, wobec organów kontroli, nadzoru, organów samorządownych i państwowych, osób fizycznych i prawnych oraz prowadzenia w jego imieniu spraw związanych z ochroną środowiska i regulowaniem praw do gruntów,

(2) udziału w pracach zespołów powołanych przez OSP dla rozwiązywania problemów technicznych, ekonomicznych i organizacyjnych związanych z problematyką zarządzania majątkiem sieciowym,

(3) dokonywania wyboru wykonawców posiadających odpowiednie uprawnienia, certyfikaty lub licencje producentów na wykonanie określonych prac, zawieranie umów z wykonawcami oraz rozliczanie rzeczowe i finansowe tych umów,

(4) wykonywania czynności kontrolnych, zgodnie z obowiązującymi przepisami,

(5) archiwizowania dokumentacji i danych dotyczących: ewidencji majątku i dokumentacji prawnej i eksploatacyjnej,

(6) sporządzania wniosków remontowych,

(7) sporządzania dla swojego obszaru działania propozycji założeń programowych i harmonogramów dla zadań remontowych i modernizacyjnych,

(8) współpracy - po uzgodnieniu z OSP - z biurami projektowymi przy opracowywaniu dokumentacji na nowobudowane, remontowane lub modernizowane obiekty sieci przesyłowej,

(9) przesyłania do OSP opinii i uwag do dokumentacji opracowanej przez biura projektowe.
4.2.3. **Dokumentacja prawna, techniczna i eksploatacyjna**

4.2.3.1. OSP odpowiada za opracowanie i stałą aktualizację dokumentacji prawnej, technicznej i eksploatacyjnej obiektów, układów, urządzeń i instalacji sieci przesyłowej.

4.2.3.2. Dokumentacja prawna obiektów sieci przesyłowej powinna zawierać:

1. pozwolenia na budowę,
2. dokumenty przekazania, względnie wywłaszczenia nieruchomości,
3. akty notarialne nabycia praw,
4. protokoły Komisji Odbioru,
5. decyzje administracyjne o pozwoleniu na użytkowanie obiektów, o ile były wymagane.

4.2.3.3. Dokumentacja techniczna obiektów, układów, urządzeń i instalacji sieci przesyłowej powinna zawierać:

1. projekt techniczny,
2. Dokumentację Techniczno – Ruchową urządzeń,
3. protokoły zakwalifikowania pomieszczeń i ich stref lub przestrzeni zewnętrznych do kategorii niebezpieczeństwa pożarowego, kategorii zagrożenia wybuchem, w zależności od potrzeb,
4. podstawowe dane techniczne urządzeń i ich lokalizacje.

4.2.3.4. Dokumentacja eksploatacyjna obiektów, układów, urządzeń i instalacji sieci przesyłowej powinna zawierać m.in.:

1. dokumenty przyjęcia do eksploatacji,
2. szczegółowe instrukcje eksploatacji,
3. wykazy prac eksploatacyjnych,
4. protokoły badań i pomiarów,
5. oceny stanu technicznego,
6. protokoły badań zakłóceń,
7. statystykę uszkodzeń i zakłóceń, w tym ewidencję wyłączeń,
8. wykaz sprzętu ochronnego,

4.2.3.5. Szczegółowe instrukcje eksploatacji obiektów w sieci przesyłowej powinny zawierać w szczególności:

1. ogólną charakterystykę obiektu wraz ze schematami i rysunkami,
2. organizację wykonawstwa prac eksploatacyjnych,
3. tryb aktualizacji dokumentacji,
wykaz stanowisk odpowiedzialnych za utrzymanie i ruch obiektu,
spis dokumentacji eksploatacyjnej,
zasady prowadzenia ruchu stacji,
zasady BHP i ochrony obiektu, w tym ochrony przeciwpożarowej
i przeciwporażeniowej,
instrukcje obsługi urządzeń.

4.2.4. Planowanie prac eksploatacyjnych

4.2.4.1. Zasady opracowywania planów prac eksploatacyjnych

4.2.4.1.1. OSP, zgodnie z „Instrukcją organizacji i wykonywania prac eksploatacyjnych
na liniach i stacjach NN”, o której mowa w pkt 4.2.1.2 (1), sporządza i
aktualizuje następujące plany:
(1) trzyletni plan prac remontowych,
(2) roczny plan prac remontowych,
(3) roczny plan prac eksploatacyjnych.

4.2.4.1.2. OSP prowadzi eksploatację elementów sieci przesyłowej uwzględniając:
(1) aktualne informacje o stanie, miejscu użytkowania, parametrach
technicznych obiektów, układów, urządzeń i instalacji sieci
przesyłowej,
(2) informacje o stanie rezerw urządzeń i części zapasowych,
(3) wyniki analiz niezawodności i awaryjności,
(4) wytyczne zawarte w dokumentacji eksploatacyjnej.

4.2.4.1.3. OSP planuje poszczególne prace eksploatacyjne i remontowe, na podstawie
wyników bieżącej eksploatacji, wyników diagnostyki i monitorowania stanu
urządzeń i układów, oraz oceny stanu technicznego poszczególnych
elementów sieci przesyłowej, z uwzględnieniem ograniczeń realizacyjnych.

4.2.4.1.4. OSP decyduje o potrzebie realizacji doraźnych prac eksploatacyjnych na
podstawie wyników oględzin i wyników badań diagnostycznych.

4.2.4.1.5. Przy sporządzaniu planów prac eksploatacyjnych i remontowych OSP dąży
do zapewnienia:
(1) stosowania jednolitych rozwiązań technicznych,
(2) spełniania wymagań określonych w publikowanych przez OSP
„Standardach technicznych OSP stosowanych w sieci przesyłowej”,
(3) zintegrowania realizacji prac eksploatacyjnych, remontowych
i inwestycyjnych,
(4) ograniczenia do minimum niezbędnej liczby wyłączeń elementów sieci
przesyłowej oraz czasu ich trwania.
4.2.4.1.6. OSP uzgadnia plany prac eksploatacyjnych JWCD i jednostek wytwórczych centralnie koordynowanych przez OSP (dalej „JWCK”), uwzględniając plany pracy sieci zamkniętej.

4.2.4.1.7. Plany prac eksploatacyjnych w koordynowanej sieci 110 kV, sporządzane przez podmioty przyłączone do sieci przesyłowej, muszą uwzględniać plany, o których mowa w pkt 4.2.4.1.1 (2) i (3).

4.2.4.2. **Ocena stanu technicznego**

4.2.4.2.1. OSP zapewnia wykonywanie ocen stanu technicznego obiektów, układów, urządzeń i instalacji eksploataowanej przez siebie sieci przesyłowej.

4.2.4.2.2. Ocena stanu technicznego obiektów, układów, urządzeń i instalacji eksploataowanej przez OSP sieci przesyłowej obejmuje:

 (1) ocenę wyników diagnostyki technicznej i monitorowania,
 (2) ocenę wyników analiz zakłóceń i awarii z podaniem przyczyn zakłóceń i uszkodzeń,
 (3) ocenę parametrów jakościowych i procesu starzenia,
 (4) ocenę spełnienia zaleceń wynikających z planów pracy sieci przesyłowej,
 (5) ocenę spełnienia warunków, o których mowa w pkt 4.1.2.1.3,
 (6) historię pracy w zakresie prowadzenia ruchu i eksploatacji,
 (7) ocenę warunków BHP, ochrony obiektu, w tym ochrony przeciwpożarowej oraz ochrony środowiska,
 (8) ocenę stanu dokumentacji prawnej, technicznej i eksploatacyjnej,
 (9) wnioski i zalecenia końcowe określające m.in. niezbędne uzupełnienia dokumentacji, zakupy oraz niezbędne do wykonania prace eksploatacyjne, w tym remontowe lub modernizacyjne.

 Ocenie stanu technicznego podlegają również magazynowane urządzenia rezerwowe oraz części zapasowe.

4.2.4.2.3. OSP opracowuje szczegółowe wytyczne do oceny stanu technicznego eksploataowanej przez siebie sieci przesyłowej. Obowiązujące wytyczne OSP publikuje na swojej stronie internetowej.

4.2.4.2.4. Obowiązek, o którym mowa w pkt 4.2.4.2.1, dotyczy także podmiotów przyłączonych do sieci przesyłowej w zakresie eksploatawanych przez nich obiektów, układów, urządzeń i instalacji.

4.2.4.2.5. OSP i OSD przekazują sobie wzajemnie wnioski z ocen stanu technicznego sieci zamkniętej.

4.2.4.2.6. Oceny stanu technicznego, o której mowa w pkt 4.2.4.2.4, należy dokonać na wzorach formularzy opracowanych przez OSP. Obowiązujące wzory formularzy OSP publikuje na swojej stronie internetowej.
4.2.4.2.7. Dokonaną, na wzorach formularzy, o których mowa w pkt 4.2.4.2.6 ocenę stanu technicznego należy przekazać do OSP co dwa lata w terminie do dnia 31 października danego roku. Pierwszą ocenę stanu technicznego należy przekazać do OSP w terminie do dnia 31 października 2011 r.

4.2.4.3. Planowanie wyłączeń

4.2.4.3.1. OSP opracowuje plany wyłączeń elementów sieci przesyłowej i zatwierdza plany wyłączeń elementów koordynowanej sieci 110 kV, zgodnie z zasadami określonymi w pkt 4.3.

4.2.4.3.2. Podmioty planujące realizację prac eksploatacyjnych wymagających wyłączeń elementów sieci zamkniętej są zobowiązane do przestrzegania zasad i trybu planowania pracy sieci zamkniętej, ustalonych przez OSP w pkt 4.3.

4.2.4.3.3. Podmioty planujące realizację prac eksploatacyjnych, modernizacyjnych i remontowych wymagających wyłączeń elementów sieci zamkniętej, przekazują OSP zgłoszenia wyłączeń elementów sieci. Zawartość i tryb przekazywania zgłoszeń określono w pkt 4.3.

4.2.4.3.4. OSP i OSD współdziałają ze sobą w celu dotrzymania terminów planowanych wyłączeń elementów sieci zamkniętej oraz minimalizacji czasu trwania wyłączeń.

4.2.5. Zasady i warunki prowadzenia prac eksploatacyjnych

4.2.5.1. Planowane i doraźne prace eksploatacyjne

4.2.5.1.1. OSP zapewnia realizację planów prac eksploatacyjnych dla obiektów, układów, urządzeń i instalacji zgodnie z „Instrukcją organizacji i wykonywania prac eksploatacyjnych na liniach i stacjach NN”, o której mowa w pkt 4.2.1.2 (1), zawierającą m.in. zasady:

(1) prowadzenia eksploatacji
(2) prowadzenia badań diagnostycznych,
(3) realizacji przeglądów lub elementów prac przeglądowych,
(4) realizacji prac związanych z utrzymaniem otoczenia z uwzględnieniem wymagań ochrony środowiska.

4.2.5.1.2. OSP zapewnia w ramach doraźnych prac eksploatacyjnych usunięcie stwierdzonych uszkodzeń i usterek urządzeń w obiektach elektroenergetycznych sieci przesyłowej.

4.2.5.2. Remonty

4.2.5.2.1. Remonty są jednym z podstawowych sposobów przywracania stanu technicznego sieci przesyłowej do poziomu pierwotnego.

4.2.5.2.2. Celem remontów jest odtworzenie pierwotnego stanu technicznego obiektów, układów, urządzeń i instalacji sieci przesyłowej, dla których aktualne
i spodziewane warunki pracy nie wymagają istotnej, w stosunku do stanu aktualnego, poprawy parametrów technicznych i jakościowych.

4.2.5.2.3. OSP, zapewnia sporządzanie w układzie kroczącem trzyletnich planów prac remontowych sieci przesyłowej, zawierających:

(1) zakresy prac,
(2) czasy trwania prac,
(3) czasy trwania wyłączeń,
(4) oszacowania nakładów finansowych.

4.2.5.2.4. W trakcie budowy planu remontów uwzględnia się zadania wynikające z planu, o którym mowa w pkt 4.1.1.2 (1).

4.2.5.2.5. OSP przeprowadza remonty obiektów, układów, urządzeń i instalacji eksploatowanej sieci przesyłowej zgodnie z publikowanymi przez OSP „Standardami technicznymi OSP stosowanymi w sieci przesyłowej” obowiązującymi w okresie ich budowy. Powyższe standardy stosuje się w przypadkach remontów obiektów, układów, urządzeń i instalacji wybudowanych przed datą, kiedy rozpoczęto publikację „Standardów technicznych OSP stosowanych w sieci przesyłowej”, jeżeli jest to technicznie możliwe.

4.2.5.2.6. Przy remoncie, gdy istniejące elementy sieci przesyłowej zastępuje się nowymi o innych rozwiązaniach konstrukcyjnych, stosuje się publikowane przez OSP „Standardy techniczne OSP stosowane w sieci przesyłowej”.

4.2.5.2.7. OSP przyjmuje do eksploatacji obiekty, układy, urządzenia i instalacje sieci przesyłowej po remoncie w trybie określonym w pkt 4.1.2.

4.2.6.

Likwidacja skutków awarii i zakłóceń

4.2.6.1. OSP zapewnia likwidację skutków awarii i zakłóceń w eksploatowanej przez siebie sieci przesyłowej oraz zabezpiecza miejsce awarii lub zakłócenia przed rozszczepianiem zakresu uszkodzeń i powstaniem dalszych szkód.

4.2.6.2. OSP część zadań w zakresie likwidacji skutków awarii i zakłóceń w eksploatowanej przez siebie sieci przesyłowej realizuje za pośrednictwem działających w jego imieniu i na jego rzecz spółek obszarowych OSP. Zasady współpracy ze spółkami obszarowymi OSP są określone w umowach zawartych pomiędzy OSP a tymi spółkami.

4.2.6.3. Szczegółowe zasady postępowania w przypadku awarii i zakłóceń, określono w pkt 4.3 niniejszej części IRiESP oraz IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

4.2.6.4. OSP przystępuje bezzwłocznie do usuwania skutków awarii i zakłóceń występujących w sieci przesyłowej.

4.2.6.5. Likwidacja awarii i zakłóceń może nastąpić w zakresie:

(1) odtworzenia stanu technicznego przed wystąpieniem awarii lub zakłócenia,
(2) modernizacji w stosunku do stanu przed awarii lub zakłócenia,
(3) częściowego odtworzenia i częściowej modernizacji w stosunku do stanu przed awarii lub zakłócenia.

4.2.6.6. Przy odtworzeniu stanu technicznego sieci przesyłowej przed wystąpieniem awarii lub zakłócenia stosuje się publikowane przez OSP „Standardy techniczne OSP stosowane w sieci przesyłowej” aktualne w okresie ich budowy. Powyższe standardy stosuje się w przypadkach odtworzenia obiektów, układów, urządzeń i instalacji wybudowanych przed datą, kiedy rozpoczęto publikację „Standardów technicznych OSP stosowanych w sieci przesyłowej”, jeżeli jest to technicznie możliwe.

4.2.6.7. W przypadku częściowej lub całkowitej modernizacji stanu technicznego przed wystąpieniem awarii lub zakłócenia, gdy istniejące elementy sieci przesyłowej zastępuje się lub uzupełnia nowymi o innych rozwiązaniach konstrukcyjnych, przy budowie nowych elementów i fragmentów sieci stosuje się publikowane przez OSP „Standardy techniczne OSP stosowane w sieci przesyłowej”.

4.2.6.8. OSP prowadzi rejestrację awarii i zakłóceń w sieci przesyłowej, oraz przeprowadza okresowe analizy i ustala środki zapobiegawcze w odniesieniu do sieci zamkniętej.

4.2.6.9. OSD i podmioty przyłączone do sieci przesyłowej są zobowiązani do przekazywania OSP informacji dotyczących awarii i zakłóceń, mogących spowodować wystąpienie zagrożenia bezpieczeństwa dostaw energii elektrycznej, oraz skutków i terminów ich usunięcia.

4.2.6.10. W przypadku awarii i zakłóceń, o których mowa w pkt 4.2.6.9 trwających dłużej niż 7 dni podmiot, w którego sieci powstała awaria lub zakłócenie zobowiązany jest przesłać do OSP harmonogram ich likwidacji.

4.2.7. Zasady wycofywania obiektów, układów, urządzeń i instalacji z eksploatacji

4.2.7.1. OSP opracowuje procedurę wycofywania z eksploatacji i likwidacji obiektów, układów, urządzeń i instalacji sieci przesyłowej.

4.2.7.2. OSP opracowuje plany wycofywania obiektów, układów, urządzeń i instalacji z eksploatacji oraz likwidacji składników majątku sieciowego.

4.2.7.3. Postępowanie likwidacyjne w sieci przesyłowej realizuje zespół likwidacyjny powoływany przez OSP zgodnie z obowiązującymi procedurami.

4.2.7.4. Do zadań zespołu likwidacyjnego w szczególności należy:
(1) ocena przydatności do dalszego użytkowania składnika majątku sieciowego zgłoszonego do likwidacji,
(2) sporządzenie i podpisanie protokołu o uznaniu składnika majątku sieciowego za zbędny,
(3) sporządzenie dokumentu likwidacji składnika majątku sieciowego,
(4) sporządzenie i podpisanie protokołu z fizycznej likwidacji składnika majątku sieciowego,
(5) w przypadku likwidacji częściowej - wskazanie do likwidacji odpowiednich elementów składnika majątku sieciowego.

4.2.8. **Zasady utrzymywania rezerw urządzeń i części zapasowych**

4.2.8.1. OSP zapewnia niezbędną liczbę urządzeń rezerwowych oraz części zapasowych dla prawidłowego funkcjonowania eksploatowanej przez siebie sieci przesyłowej.

4.2.8.2. Rodzaje i liczba urządzeń rezerwowych i części zapasowych powinny być dostosowane do liczby zainstalowanych rodzajów i typów urządzeń w sieci przesyłowej z uwzględnieniem:

1. roli pełnionej w sieci przesyłowej,
2. wymaganych parametrów jakościowych w tym niezawodności,
3. wskaźników awaryjności,
4. czasu dostawy urządzeń i części zapasowych z rynku,
5. kompatybilności typów w poszczególnych rodzajach urządzeń,
6. doświadczeń eksploatacyjnych.

4.2.8.3. Urządzenia rezerwowe powinny być utrzymywane w pełnej sprawności technicznej.

4.2.8.4. OSP zapewnia prowadzenie aktualnego wykazu urządzeń rezerwowych i części zapasowych, łącznie z miejscem ich przechowywania.

4.2.9. **Bezpieczeństwo i higiena pracy przy wykonywaniu prac**

4.2.9.1. OSP zapewnia opracowanie „Instrukcji Bezpieczeństwa i Higieny Pracy przy urządzeniach i instalacjach elektroenergetycznych”, obowiązującej personel eksploatuujący obiekty, układy, urządzenia i instalacje sieci przesyłowej, uwzględniającej wymagania zawarte w przepisach powszechnie obowiązujących.

4.2.9.2. „Instrukcja Bezpieczeństwa i Higieny Pracy przy urządzeniach i instalacjach elektroenergetycznych, o której mowa w pkt 4.2.9.1, określa w szczególności:

1. podział prac, formy i zasady wydawania poleceń,
2. obowiązki pracowników w zakresie organizacji pracy,
3. łączenie funkcji przy pracach na polecenie,
4. wystawianie i przekazywanie poleceń,
5. rejestrowanie i przechowywanie poleceń,
6. przygotowanie miejsca pracy i dopuszczenie do pracy,
(7) przerwy w pracy i zakończenie pracy,
(8) zasady organizacji pracy obowiązujących obcych wykonawców,
(9) zasady wykonywania prac przy urządzeniach i instalacjach elektroenergetycznych OSP,
(10) zasady bezpiecznego wykonywania pracy,
(11) czynności łączeniowe,
(12) prace wykonywane sprzętem zmechanizowanym,
(13) podstawowe zasady użytkowania sprzętu ochronnego i narzędzi pracy,
(14) zasady bezpiecznego postępowania przy eksploatacji urządzeń elektroenergetycznych z gazem SF6,
(15) zasady postępowania przy ratowaniu porażonych i poparzonych prądem elektrycznym.

4.2.9.3. Pracownicy zatrudnieni przy eksploatacji obiektów, układów, urządzeń i instalacji sieci przesyłowej powinni posiadać odpowiednie kwalifikacje potwierdzone świadectwem wydanym przez komisje kwalifikacyjne, określone warunki zdrowia, być przeszkoleni na zajmowanych stanowiskach, zgodnie z powszechnie obowiązującymi przepisami.

4.2.10. **Ochrona przeciwpożarowa**

4.2.10.1. OSP zapewnia ochronę przeciwpożarową w obiektach, instalacjach i urządzeniach eksploatowanej przez siebie sieci przesyłowej, zgodnie z obowiązującymi normami i przepisami.

4.2.10.2. OSP zapewnia opracowanie instrukcji przeciwpożarowych dla określonych obiektów, układów, urządzeń i instalacji eksploatowanej przez siebie sieci przesyłowej.

4.2.10.3. OSP zapewnia stosowanie w obiektach eksploatowanej przez siebie sieci przesyłowej sprzętu przeciwpożarowego, spełniającego wymagania określone w odrębnym normach i przepisach.

4.2.11. **Ochrona środowiska naturalnego**

4.2.11.1. OSP zapewnia zachowywanie i przestrzeganie przepisów ochrony środowiska.

4.2.11.2. OSP zapewnia właściwe postępowanie z odpadami szkodliwymi dla środowiska naturalnego.

4.2.11.3. OSP zapewnia stosowanie w eksploatowanej przez siebie sieci przesyłowej środków technicznych i organizacyjnych ograniczających zagrożenie środowiska naturalnego.

4.2.11.4. OSP zapewnia określenie zasad postępowania w przypadku ewentualnego skażenia środowiska naturalnego przez obiekty, układy, urządzenia i instalacje w eksploatowanej przez siebie sieci przesyłowej. Zasady
postępowania w przypadku skażenia środowiska naturalnego są uzgadniane z odpowiednimi służbami, powołanymi do zwalczania skażeń środowiska naturalnego.

4.2.11.5. OSP oraz podmioty przyłączone do sieci przesyłowej wymieniają między sobą wszelkie informacje dotyczące zagrożenia środowiska naturalnego w miejscach przyłączenia oraz w niezbędnym zakresie również w pobliżu tych miejsc, uzgadniając zakres współdziałania w zapobieganiu i likwidacji skutków tych zagrożeń.

4.2.12. **Wymagania w zakresie rozbudowy i eksploatacji dla podmiotów przyłączonych do sieci przesyłowej**

4.2.12.1. Urządzenia bezpośrednio przyłączone do sieci przesyłowej muszą spełniać warunki określone w niniejszej części IRiESP.

4.2.12.2. Wykonywanie czynności eksploatacyjnych przy urządzeniach, instalacjach i sieciach przyłączonych do sieci przesyłowej i koordynowanej sieci 110 kV wymaga uzgodnienia z OSP w zakresie, w jakim czynności te wpływają na pracę sieci przesyłowej.

4.2.12.3. Podmioty przyłączone do sieci przesyłowej prowadzą eksploatację swoich urządzeń, instalacji i sieci w sposób zapewniający ich utrzymanie we właściwym stanie technicznym oraz pozwalający na niezawodne i efektywne funkcjonowanie KSE.

4.2.12.4. Zaleca się aby podmioty przyłączone do sieci przesyłowej prowadząc eksploatację swoich urządzeń, instalacji i sieci uwzględniały publikowane przez OSP standardy w zakresie eksploatacji sieci przesyłowej.

4.2.12.5. W przypadku wystąpienia zakłócenia lub awarii w układach, urządzeniach, instalacjach i sieciach podmiotów przyłączonych do sieci przesyłowej, podmioty te niezwłocznie przystępują do usuwania ich skutków.

4.2.12.6. OSP uzgadnia decyzje o odbudowie odcinków linii oraz stacji transformatorowo - rozdzielczych w koordynowanej sieci 110 kV, które uległy zniszczeniu w wyniku awarii lub zakłócenia. Uzgodnienie wymaga przywrócenie lub - o ile analizy systemowe uzasadniają taką konieczność - zmiana funkcji realizowanych przez uszkodzony element. Uzgodnieniu nie podlega sposób odbudowy.

4.2.12.7. Podmioty przyłączone do sieci przesyłowej uwzględniają w sporządzanych planach prac eksploatacyjnych, remontowych i inwestycyjnych, plany OSP, o których mowa w pkt 4.1.1.2 i 4.2.4.1.1. Uzgadnianie planów odbywa się za pośrednictwem właściwych spółek obszarowych OSP.

4.2.12.8. OSP wykonuje obliczenia oraz koordynuje nastawienia automatyk i układów EAZ zainstalowanych w sieci przesyłowej i koordynowanej sieci 110 kV oraz urządzeń i instalacji podmiotów przyłączonych do sieci o górnym napięciu 750, 400, 220 i 110 kV.

4.2.12.9. Zakres koordynacji, o której mowa w pkt 4.2.12.8 obejmuje m.in.:

1. przekazywanie danych niezbędnych do obliczeń,
(2) przekazywanie i przyjmowanie informacji o wykonaniu zmian w nastawieniach automatyki EAZ, zgodnie z zasadami określonymi w pkt 4.3.

4.3. **Prowadzenie ruchu sieciowego**

4.3.1. **Zasady ogólne**

4.3.1.1. Przedmiotem pkt 4.3 są zasady prowadzenia ruchu sieciowego w KSE, w tym obowiązki i uprawnienia poszczególnych podmiotów oraz zasady ich współpracy w celu:

(1) utrzymania bezpieczeństwa pracy sieci elektroenergetycznej i integralności KSE oraz dotrzymania warunków umożliwiających jego pracę synchroniczną z systemami zagranicznymi, zgodnie ze standardami ENTSO-E/UCTE Operation Handbook;

(2) dotrzymania wymaganych parametrów jakościowych i niezawodności pracy sieci zamkniętej KSE zgodnie z pkt 2.1.2 oraz wymaganiami ENTSO-E/UCTE Operation Handbook;

(3) umożliwienia wykonania niezbędnych prac remontowych i eksploatacyjnych w elektrowniach i w sieci zamkniętej;

(4) fizycznej realizacji kontraktów i transakcji zawieranych przez uprawnione podmioty w obszarze rynku bilansującego;

(5) rejestrowania parametrów stanów pracy KSE mających istotne znaczenie dla jego prawidłowej pracy;

(6) opracowywania i udostępniania danych technicznych dla prawidłowego funkcjonowania rynku energii;

(7) wyznaczania i udostępniania technicznych zdolności przesyłowych linii wymiany międzysystemowej dla potrzeb przetargów.

4.3.1.2. Prowadzenie ruchu sieciowego w KSE obejmuje następujące obszary:

(1) planowanie koordynacyjne,

(2) opracowywanie bilansów technicznych mocy w KSE,

(3) dysponowanie mocą jednostek wytwórczych przyłączonych do sieci zamkniętej,

(4) planowanie pracy sieci zamkniętej,

(5) identyfikowanie ograniczeń sieciowych w sieci zamkniętej,

(6) prowadzenie operacji łączeniowych w sieci zamkniętej,

(7) działania regulacyjne w sieci zamkniętej,

(8) wprowadzanie przerw i ograniczeń w dostarczaniu i poborze energii elektrycznej,
(9) monitorowanie pracy systemu oraz zapobieganie wystąpieniu i
usuwanie skutków zagrożenia bezpieczeństwa dostaw energii
elektrycznej, w tym awarii sieciowych i awarii w systemie,

(10) zdalne pozyskiwanie danych pomiarowych i rejestrowanie stanów
pracy KSE,

(11) systemy wymiany informacji i sterowania wykorzystywane
w prowadzeniu ruchu sieciowego,

(12) Centralny rejestr jednostek wytwarzających i farm wiatrowych w KSE.

4.3.1.3. Za prowadzenie ruchu sieciowego odpowiadają operatorzy systemu, przy

(1) OSP odpowiada za prowadzenie ruchu sieciowego w sieci przesyłowej
oraz realizuje uprawnienia decyzyjne w zakresie ruchu sieciowego w
koordynowanej sieci 110 kV oraz w zakresie bezpieczeństwa dostaw
energii elektrycznej;

(2) OSD odpowiada za prowadzenie ruchu sieciowego w sieci
dystrybucyjnej, dla której został wyznaczony operatorem, z
uwzględnieniem uprawnień decyzyjnych OSP.

4.3.1.4. Wybrane zadania operatorskie w imieniu i na rzecz OSP realizują spółki
obszarowe OSP.

4.3.1.5. Podmiotami uczestniczącymi w prowadzeniu ruchu sieciowego w sieci
zamkniętej są także wytwarzacze, odbiorcy oraz przedsiębiorstwa zajmujące się
przesyłaniem lub dystrybucją nie będące operatorami systemu, których
urządzenia, instalacje lub sieci są bezpośrednio przyłączone do sieci
zamkniętej.

4.3.1.6. Podmioty uczestniczące w prowadzeniu ruchu sieciowego sporządzają
w formie pisemnej wykazy osób i jednostek organizacyjnych bezpośrednio
uczestniczących w prowadzeniu ruchu KSE. Wykazy muszą być podpisane
przez osoby upoważnione do reprezentowania danego podmiotu. Wykazy
podlegają bieżącej aktualizacji i są sobie wzajemnie przekazywane.

4.3.1.7. OSP ustala zasady i tryb wzajemnego przekazywania sobie danych i
informacji, o których mowa w pkt 4.3.3 - 10, przez podmioty uczestniczące
w procesie prowadzenia ruchu sieciowego.

4.3.1.8. Podstawowym narzędziem wykorzystywanym przez OSP dla zapewnienia
spójności działań planistycznych podmiotów uczestniczących
w prowadzeniu ruchu sieciowego z wymaganiami bezpieczeństwa pracy sieci
elektroenergetycznej jest planowanie koordynacyjne.

4.3.1.9. Bieżące bezpieczeństwo pracy sieci elektroenergetycznej zapewniają
działające w układzie hierarchicznym służby dyspozytorskie OSP i OSD i
slużby ruchowe wytwarzaczy i odbiorców działające zgodnie z zasadami
przedstawionymi w pkt 4.3.2.

4.3.1.10. Współdziałanie OSP z operatorami systemów przesyłowych krajów
sąsiednich w zakresie prowadzenia ruchu sieciowego odbywa się zgodnie z
zasadami opisanymi w ENTSO-E/UCTE Operation Handbook i warunkami określonymi w dwustronnych umowach.

4.3.1.11. OSP prowadzi Centralny rejestr jednostek wytwórczych i farm wiatrowych w KSE.

4.3.1.12. Współpraca pomiędzy OSP a OSD, o której mowa w pkt I.A.4 IRiESP - Część ogólna, w zakresie określonym postanowieniami pkt 4.3 niniejszej części IRiESP, realizowana jest według zasad określonych w pkt 2.2.1.4.12 (1) - (3) niniejszej części IRiESP.

4.3.2. Struktura organizacyjna prowadzenia ruchu sieciowego

4.3.2.1. OSP realizuje niektóre swoje zadania w zakresie prowadzenia ruchu sieciowego również poprzez działające w jego imieniu i na jego rzecz spółki obszarowe OSP. Zasady współpracy OSP ze spółkami obszarowymi OSP są określone w umowach zawartych pomiędzy OSP a tymi spółkami.

4.3.2.2. Zadania OSP, zlecone spółkom obszarowym OSP, dotyczą realizacji jego obowiązków w zakresie bezpieczeństwa dostaw energii elektrycznej, w tym niezawodności pracy sieci zamkniętej, wymagających obszarowego współdziałania operatorów systemu oraz innych podmiotów przyłączonych do sieci zamkniętej.

4.3.2.3. Spółkom obszarowym OSP indywidualnie przypisane są obszary sieci dystrybucyjnej oraz zasilające je stacje NN/110 kV. Ustala się następujące obszary sieci dystrybucyjnej przypisanej do poszczególnych spółek obszarowych OSP:

(2) do PSE - Wschód S.A. przypisana jest: sieć dystrybucyjna PGE Dystrybucja S.A. Oddziały: Lublin, Zamość, Rzeszów oraz Skarżysko-Kamienna;

(3) do PSE - Południe S.A. przypisana jest: sieć dystrybucyjna TAURON Dystrybucja S.A. Oddziały w Częstochowie, Będzinie, Krakowie, Bielsku-Białej, Tarnowie, Opolu i Vattenfall Distribution Poland S.A.;

(5) do PSE - Północ S.A. przypisana jest sieć dystrybucyjna ENEA Operator Sp. z o.o. Oddział Bydgoszcz oraz ENERGA - Operator S.A. Oddziały w: Koszalinie, Śłupsku, Gdańsku, Elblągu, Olsztynie oraz Toruniu.
W przypadku zmiany firmy pod jaką prowadzi działalność dany OSD lub zmiany obszarów działalności OSD, do czasu aktualizacji powyższego punktu poprzez zmianę postanowień IRiESP, OSP prześle poszczególnym OSD oraz spółkom obszarowym OSP, przypisane obszary sieci dystrybucyjnej poszczególnych OSD.

4.3.2.4. W zakresie prowadzenia ruchu sieciowego w sieci zamkniętej OSP poprzez spółki obszarowe OSP, realizuje następujące funkcje w ramach przypisanych im obszarów sieciowych:

1. pozyskiwanie danych planistycznych od OSD i wytwórców;
2. prowadzenie ciągłej analizy pracy koordynowanej sieli 110 kV oraz opracowywanie okresowych ocen i wytycznych prowadzenia ruchu koordynowanej sieci 110 kV,
3. podejmowanie decyzji w zakresie planowania pracy, prowadzenia operacji łącznościowych, dysponowania jednostkami wytwórczymi, działań regulacyjnych w koordynowanej sieci 110 kV;
4. opracowywanie i aktualizacja planów obszarowych obrony i odbudowy po wystąpieniu awarii sieciowej lub awarii w systemie oraz prowadzenie szkoleń w tym zakresie z udziałem właściwych służb OSD, wytwórców i odbiorców,
5. likwidacja, we współpracy ze służbami dystrybucyjnymi OSD i służbami ruchowymi wytwórców i odbiorców, awarii sieciowych, awarii w systemie i odbudowa KSE na podstawie planu obrony i odbudowy KSE oraz obszarowych planów obrony i odbudowy,
6. prowadzenie niezbędnych uzgodnień z wytwórcami, OSD oraz odbiorcami końcowymi dla opracowania instrukcji współpracy ruchowej stacji NN/110 kV, do której są przyłączone ich sieci, instalacje i urządzenia,
7. zdalne pozyskiwanie pomiarów z koordynowanej sieci 110 kV w zakresie pkt 4.3.12.2.

4.3.2.5. Zadania realizowane przez spółki obszarowe OSP są uwzględnione w IRiESP.

4.3.2.6. Za bieżące prowadzenie ruchu sieci zamkniętej odpowiadają działające w układzie hierarchicznym służby dystrybucyjne OSP i OSD, służby ruchowe wytwórców i odbiorców końcowych przyłączonych bezpośrednio do sieci zamkniętej oraz obsługa ruchowa stacji.

4.3.2.7. Służbami dystrybucyjnymi OSP są:

1. działająca w ramach PSE S.A. Krajowa Dyspozycja Mocy (dalej „slużby dystrybucyjne OSP - KDM”),
2. działające w ramach spółek obszarowych OSP Obszarowe Dyspozycje Mocy (dalej „slużby dystrybucyjne OSP - ODM”).
4.3.2.8. Służbami dyspozytorskimi OSD są działające w ich ramach wydzielone komórki organizacyjne uprawnione do prowadzenia ruchu koordynowanej sieci 110 kV i kierowania pracą jednostek wtórnych przyłączonych do koordynowanej sieci 110 kV nie będących JWCD ani JWCK (dalej „slużby dyspozytorskie OSD”).

4.3.2.9. Służbą ruchową wytwórców jest Dyżurny Inżynier Ruchu Elektrowni (dalej „slużba ruchowa wytwórcy DIRE”).

4.3.2.10. Służbą ruchową odbiorców końcowych przyłączonych bezpośrednio do sieci zamkniętej jest Dyżurny Inżynier Ruchu (dalej „slużba ruchowa odbiorców DIR”).

4.3.2.11. Współpraca służb dyspozytorskich i ruchowych obejmuje:

(1) przekazywanie bieżących informacji w zakresie i trybie określonym w IRiESP,
(2) wydawanie poleceń ruchowych przez uprawnione i upoważnione osoby,
(3) potwierdzanie otrzymania polecenia przez uprawnione i upoważnione osoby,
(4) informowanie o realizacji polecenia,
(5) rejestrację przebiegu realizacji pkt (2) - (4) oraz rejestrację pozyskania i przekazania informacji odbiegających od standardowych lub mających wpływ na podejmowane decyzje.

4.3.2.12. Służba dyspozytorska OSP - KDM jest uprawniona do wydawania poleceń ruchowych:

(1) służbom dyspozytorskim OSP - ODM w pełnym zakresie,
(2) służbom ruchowym wytwórcy DIRE w zakresie pracy wszystkich JWCD,
(3) służbom ruchowym wytwórcy DIRE w zakresie korekty programu pracy JWCK przyłączonych do sieci przesyłowej.

4.3.2.13. Służba dyspozytorska OSP - ODM jest uprawniona do wydawania poleceń ruchowych:

(1) służbom dyspozytorskim OSD w zakresie układu pracy koordynowanej sieci 110 kV,
(2) służbom ruchowym wytwórcy DIRE w zakresie synchronizacji z siatką JWCD i JWCK przyłączonych do sieci przesyłowej (z uwzględnieniem instrukcji współpracy ruchowej danej stacji),
(3) służbom ruchowym wytwórcy DIRE w zakresie korekty programu pracy JWCK przyłączonych do koordynowanej sieci 110 kV,
(4) obsłudze ruchowej stacji w zakresie operacji łączeniowych w rozdzieleniach sieci przesyłowej,
(5) służbom ruchowym wytwórcy DIRE w zakresie pracy JWCD (jako działanie awaryjne w przypadku braku bezpośredniego kontaktu pomiędzy służbami dyspozytorskimi OSP - KDM a służbami ruchowymi wytwórcy DIRE,

(6) służbom ruchowym wytwórcy DIRE w zakresie korekty programu pracy JWCK przyłączonych do sieci przesyłowej (jako działanie awaryjne w przypadku braku bezpośredniego kontaktu pomiędzy służbami dyspozytorskimi OSP - KDM a służbami ruchowymi wytwórcy DIRE,

(7) służbom ruchowym odbiorców końcowych DIR, w zakresie urządzeń przyłączonych bezpośrednio do sieci przesyłowej.

4.3.2.14. Służba dyspozytorska OSD jest uprawniona do wydawania poleceń ruchowych:

(1) służbom ruchowym wytwórcy DIRE w zakresie synchronizacji z sienną jednostek wytwórczych przyłączonych do koordynowanej sieci 110 kV (z uwzględnieniem instrukcji współpracy ruchowej danej stacji),

(2) obsłudze ruchowej stacji w zakresie operacji łączeniowych w rozdziałach koordynowanej sieci 110 kV,

(3) służbom ruchowym odbiorców końcowych DIR, w zakresie urządzeń przyłączonych bezpośrednio do koordynowanej sieci 110 kV.

4.3.2.15. Wykaz osób uprawnionych i upoważnionych do przekazywania informacji ruchowych, wydawania i wykonywania poleceń ruchowych oraz prowadzenia uzgodnień wraz z wykazem środków łączności glosowej jest opracowywany, aktualizowany na bieżąco i wzajemnie przekazywany przez podmioty, w ramach których działają służby dyspozytorskie, o których mowa w pkt 4.3.2.7 - 8 oraz służby ruchowe, o których mowa w pkt 4.3.2.9 - 10.

4.3.3. Planowanie koordynacyjne

4.3.3.1. OSP realizuje planowanie koordynacyjne w KSE poprzez opracowywanie i udostępnianie:

(1) planów koordynacyjnych,

(2) bilansów techniczno - handlowych.

4.3.3.2. OSP opracowuje następujące rodzaje planów koordynacyjnych i bilansów techniczno - handlowych:

(1) roczny plan koordynacyjny (dalej „plan koordynacyjny PKR”),

(2) miesięczny plan koordynacyjny (dalej „plan koordynacyjny PKM”),

(3) dobowe plany koordynacyjne, w tym:

(3.1) wstępny plan koordynacyjny dobowy (dalej „plan koordynacyjny WPKD”),
(3.2) plan koordynacyjny dobowy (dalej „plan koordynacyjny PKD”),
(3.3) bieżący plan koordynacyjny dobowy (dalej „plan koordynacyjny BPKD”),
(4) bilanse techniczno - handlowe dobowe (dalej „BTHD”).

4.3.3.3. Plany koordynacyjne PKR, PKM są planami technicznymi, a plany koordynacyjne WPKD, PKD i BPKD są planami realizacyjnymi w obszarze rynku bilansującego.

4.3.3.4. Bilanse techniczno - handlowe opracowywane są na użytek rynku bilansującego i mają charakter wyłącznie informacyjny.

4.3.3.5. OSP sporządza i udostępnia plany koordynacyjne w następujących terminach:
(1) plan koordynacyjny PKR na okres 3 kolejnych lat - do 30 listopada roku poprzedzającego,
(2) plan koordynacyjny PKM - dla marca do dnia 23 lutego, a dla pozostałych miesięcy do dnia 25 miesiąca poprzedzającego, na kolejny miesiąc,
(3) plany koordynacyjne dobowe WPKD, PKD i BPKD - zgodnie z zasadami określonymi w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi,
(4) bilanse techniczno - handlowe - zgodnie z zasadami określonymi w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

4.3.3.6. Plan koordynacyjny PKR zawiera dla poszczególnych miesięcy kalendarzowych następujące elementy:
(1) prognozowaną średniomiesięczną moc osiągalną krajowych jednostek wytwórczych z podziałem na JWCD i nJWCD, wyszczególniając odpowiednie typy jednostek wytwórczych,
(2) prognozowaną średniomiesięczną moc dyspozycyjną elektrowni krajowych uwzględniającą ubytki mocy wynikające ze zgłoszonych przez wytwórców rocznych planów remontowych JWCD, zgłoszone ubytki mocy nJWCD oraz planowane ubytki mocy ze względu na warunki pracy sieci, w dobowych szczytach zapotrzebowania na moc w KSE z dni roboczych,
(3) prognozowaną średniomiesięczną moc dyspozycyjną OSP uwzględniającą ubytki mocy wynikające ze zgłoszonych przez wytwórców rocznych planów remontowych JWCD oraz planowane obciążenie nJWCD w dobowych szczytach zapotrzebowania na moc w KSE z dni roboczych,
(4) prognozowane dla typowych warunków pogodowych dla danego miesiąca średniomiesięczne zapotrzebowanie na moc w KSE w dobowych szczytach tego zapotrzebowania z dni roboczych,
(5) prognozowane maksymalne zapotrzebowanie na moc w KSE w miesiącu,

(6) prognozowaną średniomiesięczną zdeterminowaną wymianę międzysystemową w dobowych szczytach zapotrzebowania na moc w KSE z dni roboczych, wynikającą z zawartych umów i zgłoszonej wymiany nierównoległej,

(7) prognozowane średniomiesięczne obciążenie nJWCD w dobowych szczytach zapotrzebowania na moc w KSE z dni roboczych,

(8) prognozowane średniomiesięczne rezerwy mocy w elektrowniach krajowych w dobowych szczytach zapotrzebowania na moc w KSE z dni roboczych,

(9) prognozowane średniomiesięczne rezerwy mocy OSP w dobowych szczytach zapotrzebowania na moc w KSE z dni roboczych,

(10) plan wyłączeń elementów sieci zamkniętej,

(11) minimalne niezbędne i maksymalne możliwe liczby jednostek wytwórczych w poszczególnych węzłach w całym okresie objętym planem,

(12) planowane ograniczenia wymiany międzysystemowej w całym okresie objętym planem.

4.3.3.7. Plan koordynacyjny PKM zawiera dla poszczególnych dni miesiąca następujące elementy:

(1) prognozowaną moc osiągalną krajowych jednostek wytwórczych z podziałem na JWCD i nJWCD,

(2) prognozowaną moc dyspozycyjną elektrowni krajowych, uwzględniającą ubytki mocy wynikające ze zgłoszonych przez wytwórców planowych rocznych i skorygowanych w planach miesięcznych harmonogramów remontów JWCD, zgłoszone planowane ubytki mocy JWCD oraz planowane ubytki mocy nJWCD oraz planowane ubytki mocy ze względu na warunki pracy sieci w dobowych szczytach zapotrzebowania na moc w KSE,

(3) prognozowaną moc dyspozycyjną OSP uwzględniającą ubytki mocy wynikające ze zgłoszonych przez wytwórców rocznych planów remontowych JWCD, planowane ubytki mocy JWCD ze względu na warunki pracy sieci oraz planowane obciążenie nJWCD w dobowych szczytach zapotrzebowania na moc w KSE,

(4) prognozowane dla danego miesiąca zapotrzebowanie na moc w KSE w dobowych szczytach tego zapotrzebowania, dla typowych warunków pogodowych,

(5) prognozowaną zdeterminowaną wymianę międzysystemową w dobowych szczytach zapotrzebowania na moc w KSE wynikającą z
zawartych umów i zgłoszonej wymiany nierównoległej,

(6) prognozowane obciążenie nJWCD w dobowych szczytach zapotrzebowania na moc w KSE,

(7) prognozowane rezerwy mocy w elektrowniach krajowych w dobowych szczytach zapotrzebowania na moc w KSE,

(8) prognozowane rezerwy mocy OSP w dobowych szczytach zapotrzebowania na moc w KSE,

(9) plan wyłączeń elementów sieci zamkniętej,

(10) minimalne niezbędne i maksymalne możliwe liczby jednostek wytwarzających w poszczególnych węzłach w całym okresie objętym planem,

(11) planowane ograniczenia wymiany międzysystemowej w całym okresie objętym planem.

4.3.3.8. Zawartość planów koordynacyjnych WPKD, PKD i BPKD oraz BTHD określona jest w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

4.3.3.9. Zasady wyznaczania technicznych zdolności wymiany międzysystemowej określone zostały w dokumencie, o którym mowa w pkt 2.3.4.2.

4.3.3.10. Zasady wyznaczania minimalnych niezbędnych i maksymalnych możliwych wartości obciążenia JWCD w poszczególnych węzłach opisane zostały w pkt 4.3.7.

4.3.4. **Opracowywanie bilansów technicznych mocy w KSE**

4.3.4.1. OSP opracowuje bilanse techniczne mocy w cyklach odpowiadających tworzeniu planów koordynacyjnych PKR, PKM, WPKD, PKD, BPKD oraz BTHD. W tym celu opracowuje prognozy zapotrzebowania na moc w KSE oraz pozyskuje niezbędne dane dotyczące jednostek wytwarzających oraz wymiany międzysystemowej.

4.3.4.2. OSP opracowuje prognozy zapotrzebowania na moc w KSE obejmujące:

(1) prognozy roczne na potrzeby planów koordynacyjnych PKR, zawierające średnie miesięczne wielkości zapotrzebowania na moc w KSE w dobowych szczytach tego zapotrzebowania dni roboczych dla poszczególnych miesięcy - do dnia 1 listopada bieżącego roku dla trzech kolejnych lat;

(2) prognozy miesięczne na potrzeby planów koordynacyjnych PKM, zawierające wielkości zapotrzebowania na moc w KSE w dobowych szczytach tego zapotrzebowania poszczególnych dni - dla marca do dnia 23 lutego, a dla pozostałych miesięcy do dnia 25 miesiąca poprzedzającego, na kolejny miesiąc;

(3) prognozy dobowe na potrzeby planów koordynacyjnych BTHD, WPKD i PKD zawierające średniogodzinowe wielkości
zapotrzebowania na moc w KSE poszczególnych godzin doby - do godziny 10:00 każdego dnia, dla kolejnych 9 dób;

(4) prognozy dla potrzeb aktualizacji BPKD - na bieżąco.

4.3.4.3. Operatorzy systemów dystrybucyjnych oraz odbiorcy końcowi przyłączeni do sieci przesyłowej opracowują dla swojego obszaru działania prognozy roczne, na kolejne 3 lata, zapotrzebowania na moc i przekazują je do OSP do dnia 15-go września roku poprzedzającego za pośrednictwem właściwej spółki obszarowej OSP.

4.3.4.4. W związku z prowadzonym przez OSP planowaniem bilansów technicznych mocy wytwórcy posiadający JWCD oraz OSD przekazują OSP niezbędne do planowania dane techniczne, odpowiednio w terminach:

(1) dla potrzeb planowania rocznego - do dnia 15-go września roku poprzedzającego, dla 3 kolejnych lat kalendarzowych;

(2) dla potrzeb planowania miesięcznego - do 20-go dnia miesiąca poprzedzającego;

(3) dla potrzeb planowania dobowego - do godz. 10:00 dnia poprzedzającego, dla kolejnych 9 dób;

(4) dla potrzeb aktualizacji BPKD - na bieżąco.

4.3.4.5. Wytwórcy posiadający JWCD i JWCK przekazują OSP w ramach planowania rocznego za pośrednictwem właściwej spółki obszarowej OSP:

(1) proponowany harmonogram postojów planowych JWCD, a w przypadku JWCD przyłączonych do koordynowanej sieci 110 kV harmonogram uzgodniony z właściwym OSD;

(2) proponowany harmonogram postojów planowych JWCK, a w przypadku JWCK przyłączonych do koordynowanej sieci 110 kV harmonogram uzgodniony z właściwym OSD;

(3) planowane wartości średniomiesięczne mocy osiągalnych i mocy dyspozycyjnych jednostek wytwórczych dla dni roboczych, dla poszczególnych miesięcy.

4.3.4.6. Wytwórcy posiadający JWCD przekazują OSP dla potrzeb planowania miesięcznego harmonogram postojów planowych poszczególnych JWCD, a w przypadku JWCD przyłączonych do koordynowanej sieci 110 kV harmonogram remontów uzgodniony z właściwym OSD.

4.3.4.7. Wytwórcy posiadający JWCK przekazują OSP dla potrzeb planowania miesięcznego za pośrednictwem właściwej spółki obszarowej OSP:

(1) planowane wartości mocy dyspozycyjnych poszczególnych JWCK w szczycie obciążenia każdej doby planowanego okresu;

(2) planowane wartości ubytków mocy na remoncie planowe poszczególnych JWCK w szczycie obciążenia każdej doby planowanego okresu, a w przypadku JWCK przyłączonych do koordynowanej sieci 110 kV planowane wartości ubytków uzgodnione...
z właściwym OSD.

4.3.4.8. Wytwórcy posiadający JWCD przekazują OSP, dla potrzeb planowania dobowego, planowane ubytki mocy poszczególnych JWCD dla każdej godziny doby zgodnie z zasadami określonymi w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

4.3.4.9. Wytwórcy posiadający JWCK przyłączone do sieci przesyłowej przekazują OSP dla potrzeb planowania dobowego, plany mocy dyspozycyjnych oraz ubytków mocy poszczególnych JWCK dla każdej godziny doby.

4.3.4.10. Wytwórcy posiadający JWCK przyłączone do koordynowanej sieci 110 kV przekazują OSP za pośrednictwem właściwej spółki obszarowej OSP, dla potrzeb planowania dobowego, plany mocy dyspozycyjnych, ubytków mocy poszczególnych JWCK oraz planowaną generację dla każdej godziny doby.

4.3.4.11. Służby ruchowe wytwórcy DIRE zgłaszają służbom dyspozytorskim OSP - KDM bieżące ubytki mocy poszczególnych JWCD.

4.3.4.12. Służby ruchowe wytwórcy DIRE zgłaszają służbom dyspozytorskim OSP - KDM bieżące korekty planu generacji poszczególnych JWCK przyłączonych do sieci przesyłowej dla potrzeb aktualizacji planu koordynacyjnego BPKD.

4.3.4.13. Służby ruchowe wytwórcy DIRE zgłaszają służbom dyspozytorskim OSP - ODM bieżące korekty planu generacji poszczególnych JWCK przyłączonych do koordynowanej sieci 110 kV dla potrzeb aktualizacji planu koordynacyjnego BPKD.

4.3.4.14. Operatorzy systemów dystrybucyjnych przekazują OSP, dla potrzeb sporządzania planu koordynacyjnego PKR, za pośrednictwem właściwej spółki obszarowej OSP, następujące dane:

(1) prognozowane wartości średnioniesięczne sumaryczne mocy osiągalnych i mocy dyspozycyjnych jednostek wytwórczych przyłączonych do sieci dystrybucyjnej, innych niż JWCD lub JWCK, w okresach szczytów dobowych, dla dni roboczych, dla każdego miesiąca planowanego okresu, z podziałem na: elektrownie wydzielone, małe ciepłne, małe wodne, wiatrowe i przemysłowe;

(2) planowane wartości średnioniesięczne wymiany międzysystemowej nierównoległej realizowanej poprzez sieć 110 kV w okresach szczytów dobowych, dla dni roboczych, dla każdego miesiąca planowanego okresu oraz planowane wartości energii elektrycznej wymiany międzysystemowej nierównoległej realizowanej poprzez sieć 110 kV dla każdego miesiąca planowanego okresu, wynikające z zawartych umów;

(3) sumę prognozowanych średnioniesięcznych mocy generowanych przez jednostki wytwórcze, inne niż JWCD lub JWCK, dla szczytów obciążenia dni roboczych planowanego okresu, z podziałem na: elektrownie wydzielone, małe ciepłne, małe wodne, wiatrowe i przemysłowe.
Operatorzy systemów dystrybucyjnych przekazują OSP, dla potrzeb sporządzenia planu koordynacyjnego PKM, za pośrednictwem właściwej spółki obszarowej OSP:

(1) prognozowane wartości sumaryczne mocy dyspozycyjnych jednostek wytwórczych przyłączonych do sieci dystrybucyjnej, innych niż JWCD lub JWCK, w szczycie obciążenia każdej doby planowanego okresu, z podziałem na: elektrownie wydzielone, małe cieplne, małe wodne, wiatrowe i przemysłowe;

(2) planowane wartości wymiany międzyystemowej nierównoległej realizowanej poprzez sięć 110 kV w okresach szczyców dobowych obciążenia KSE dla każdego dnia planowanego okresu, oraz planowane wartości energii elektrycznej wymiany międzyystemowej nierównoległej realizowanej poprzez sięć 110 kV dla każdej doby planowanego okresu, wynikające z zawartych umów;

(3) sumę prognozowanych mocy generowanych przez jednostki wytwórcze inne niż JWCD lub JWCK w szczycie obciążenia każdej doby planowanego okresu, z podziałem na: elektrownie wydzielone, małe cieplne, małe wodne, wiatrowe i przemysłowe.

4.3.4.16. Operatorzy systemów dystrybucyjnych przekazują OSP dla potrzeb planowania dobowego dla każdej godziny dob od n do n+9, za pośrednictwem właściwej spółki obszarowej OSP, następujące dane:

(1) planowane wartości sumaryczne mocy dyspozycyjnych jednostek wytwórczych przyłączonych do sieci dystrybucyjnej, innych niż JWCD lub JWCK, z podziałem na: elektrownie wydzielone, małe cieplne, małe wodne, wiatrowe i przemysłowe;

(2) planowane wartości wymiany międzyystemowej nierównoległej realizowanej poprzez sięć 110 kV;

(3) sumę planowanych mocy generowanych przez jednostki wytwórcze, inne niż JWCD lub JWCK, z podziałem na: elektrownie wydzielone, małe cieplne, małe wodne, wiatrowe i przemysłowe.

4.3.4.17. Służby dyspozytorskie OSD, dla potrzeb aktualizacji planu koordynacyjnego BPKD przekazują OSP, na każdą godzinę dobę, za pośrednictwem służb dyspozytorskich OSP - ODM bieżące korekty następujących danych:

(1) planowane wartości mocy dyspozycyjnych poszczególnych jednostek wytwórczych przyłączonych do sieci dystrybucyjnej innych niż JWCD lub JWCK, z podziałem na: elektrownie wydzielone, małe cieplne, małe wodne i przemysłowe;

(2) planowane wartości wymiany międzyystemowej nierównoległej realizowanej poprzez sięć 110 kV;

(3) sumę planowanych mocy generowanych przez jednostki wytwórcze, inne niż JWCD lub JWCK z podziałem na: elektrownie wydzielone,
małe cieplne, małe wodne, wiatrowe i przemysłowe.

Sposób przekazywania danych, o których mowa w pkt 4.3.4.14 - 17 podlega ustaleniom w trybie roboczym pomiędzy OSP a OSD.

4.3.4.18. Obliczone, w ramach poszczególnych planów koordynacyjnych, rezerwy mocy OSP w stosunku do zapotrzebowania do pokrycia przez elektrownie krajowe powinny wynosić odpowiednio:

(1) dla PKR - 18%,
(2) dla PKM - 17%,
(3) dla BTHD - 14%.

4.3.4.19. OSP sporządza plany koordynacyjne PKD programuje pracę JWCD w taki sposób, aby zapewnione były następujące wymagania w zakresie rezerwy mocy OSP dla każdej godziny doby:

(1) sumaryczna planowana rezerwa mocy OSP dostępna w czasie nie dłuższym niż 1 godzina (w przypadku elektrowni interwencyjnych należy uwzględnić ograniczenia czasowe ich pracy) powinna wynosić nie mniej niż 9% planowanego zapotrzebowania do pokrycia przez elektrownie krajowe;
(2) planowana rezerwa ujemna, wyznaczana jako nadwyżka całkowitego zapotrzebowania na moc do pokrycia przez elektrownie krajowe nad mocą sumy minimów technicznych JWCD planowanych do pracy i planowanego obciążenia elektrowni nJWCD, powinna wynosić nie mniej niż 500 MW i być dostępna w czasie nie dłuższym niż 1 godzina.

4.3.5. Dysponowanie mocą jednostek wytwórczych przyłączonych do sieci zamkniętej

4.3.5.1. OSP dysponuje centralnie:

(1) konwencjonalnymi jednostkami wytwórczymi przyłączonymi do sieci przesyłowej z wyłączeniem jednostek wytwórczych, które ze względów technologicznych, decyzją OSP, zostały zaliczone do JWCK,
(2) konwencjonalnymi jednostkami wytwórczymi o mocach osiągalnych 100 MW lub wyższych, przyłączonymi do koordynowanej sieci 110 kV, z wyłączeniem jednostek wytwórczych, które ze względów technologicznych, decyzją OSP, zostały zaliczone do JWCK,
(3) innymi jednostkami wytwórczymi niż wymienione w pkt (2), przyłączonymi do koordynowanej sieci 110 kV na podstawie umów zawieranych z właściwym OSD i wytwórcą.

Jednostki wytwórcze określone w pkt (1) - (3) zwane są JWCD.

4.3.5.2. OSP koordynuje pracę konwencjonalnych jednostek wytwórczych przyłączonych do sieci zamkniętej o mocy osiągalnej 50 MW lub wyższej a nie wymienionych w pkt 4.3.5.1, zwanych JWCK

4.3.5.3. OSP sporządza i udostępnia podmiotom, których to dotyczy oraz na bieżąco
aktualizuje wykaz:
(1) jednostek wytwórczych centralnie dysponowanych,
(2) jednostek wytwórczych centralnie koordynowanych.

4.3.5.4. Dla potrzeb bilansowania technicznego mocy w KSE ustala się poniższą klasyfikację jednostek wytwórczych innych, niż JWCD i JWCK:
(1) elektrownie wydzielone (elektrownie cieplne, elektrociepłownie, elektrownie wodne, farmy wiatrowe),
(2) małe farmy wiatrowe,
(3) małe elektrownie cieplne, w tym elektrociepłownie,
(4) małe elektrownie wodne,
(5) elektrownie przemysłowe.
OSP sporządza, udostępnia podmiotom, których to dotyczy i na bieżąco aktualizuje wykaz elektrowni wydzielonych.

Typy wytwórców, których definicje nie są zawarte w IRiESP precyzowane są w ramach ustaleń roboczych, w zależności od struktury sieci i rozkładu oraz typów generacji u danego OSD.

4.3.5.5. OSP zatwierdza harmonogramy remontów JWCD i JWCK. Zatwierdzone harmonogramy remontów JWCD i JWCK przesyłane są do wytwórców oraz, w przypadku JWCD i JWCK przyłączonych do koordynowanej sieci 110 kV, za pośrednictwem właściwej spółki obszarowej OSP, do OSD w następujących terminach:
(1) roczne harmonogramy remontów na potrzeby planów koordynacyjnych PKR - do 30-go października roku poprzedzającego na 3 kolejne lata,
(2) każdorazowo przy zmianie harmonogramu remontów w roku bieżącym.

4.3.5.6. Przyjmuje się ogólną zasadę, że remonty przyjęte do planu wcześniejszego mają priorytet w stosunku do remontów zgłoszonych do planów późniejszych.

4.3.5.7. OSP wprowadza zmiany do harmonogramów remontów JWCD, jeśli jest to niezbędne dla zapewnienia bezpiecznej pracy systemu.

4.3.5.8. OSP planuje pracę JWCD na okres doby operatywnej w ramach opracowywania planów koordynacyjnych PKD i BPKD zgodnie z zasadami określonymi w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

4.3.5.9. W ramach centralnego dysponowania mocą jednostek wytwórczych OSP, przy wykorzystaniu służb dyspozytorskich OSP - KDM, określa dla poszczególnych JWCD:
(1) czas synchronizacji,
(2) czas osiągnięcia minimalnego technicznego jednostki wytwórczej,
(3) planowane obciążenie mocą czynną,
(4) czas odstawienia.

4.3.5.10. Służby dyspozytorskie OSP - KDM zatwierdzają na wniosek służb ruchowych wytwórcy DIRE czas synchronizacji i czas odstawienia JWCK przyłączonych do sieci przesyłowej.

4.3.5.11. OSP za pośrednictwem właściwych służb dyspozytorskich OSP - ODM zatwierdza na wniosek służb ruchowych wytwórcy DIRE czas synchronizacji i czas odstawienia JWCK przyłączonych do koordynowanej sieci 110 kV oraz informuje o swojej decyzji służby dyspozytorskie OSD.

4.3.5.12. W celu umożliwienia wprowadzenia do ruchu JWCD w wymaganym czasie, służby dyspozytorskie OSP - KDM polecają służbom ruchowym wytwórcy DIRE podjęcie działań przygotowawczych z wyprzedzeniem wynikającym z deklarowanego przez wytwórca czasu, koniecznego do synchronizacji z siecią i osiągnięcia przyjętych zdolności wytwórczych.

4.3.5.13. Bezpośrednio przed synchronizacją z siecią zamkniętą jednostki wytwórczej, służby ruchowe wytwórcy DIRE są zobowiązane uzyskać zgodę, na tę synchronizację, operatora systemu, który kieruje czynnościami łączeniowymi w rozdzielni, do której dana jednostka jest przyłączona (właściwych służb dyspozytorskich: OSP - ODM lub OSD). Identyficzna procedura obowiązuje przy odstawieniu jednostki wytwórczej z ruchu.

4.3.5.14. Synchronizacja z siecią JWCD i JWCK odbywa się zgodnie z instrukcją współpracy ruchowej stacji, do której rozdzielni przyłączone są jednostki wytwórcze, przy czym podstawowym punktem synchronizacji jest wyłącznik generatorowy. Rezerwowym punktem synchronizacji jest wyłącznik blokowy lub wyłącznik sieciowy.

4.3.5.15. Służby dyspozytorskie OSP - KDM przekazują służbom ruchowym wytwórcy DIRE, dla każdej JWCD, plan obciążenia JWCD oraz polecenia ruchowe w zakresie:

(1) uruchomienia JWCD,
(2) odstawienia JWCD,
(3) wykorzystania regulacji wtórnej,
(4) wykorzystania regulacji pierwotnej,
(5) wykorzystania układów ARNE,
(6) pracy w zaniżeniu,
(7) pracy w przeciążeniu,
(8) zadania wielkości generowanej mocy czynnej i biernej,
(9) zmiany trybu pracy jednostki wytwórczej (regulatora turbiny).

4.3.5.16. Służby dyspozytorskie OSP po wyczerpaniu możliwości regulacyjnych JWCD w stanach zakłóconych KSE mają prawo do wykorzystania pełnych zdolności techniczno - ruchowych JWCK w celu eliminacji zagrożeń w pracy systemu.
4.3.5.17. Służby ruchowe wytwórcy DIRE są zobowiązane do realizacji poleceń otrzymanych od służb dyspozytorskich OSP i niezwłocznego przekazywania informacji o stanie pracy oraz stwierdzonych ograniczeniach w pracy JWCD, w szczególności w zakresie:

(1) potwierdzenia przyjęcia oraz wykonania poleceń ruchowych wydanych zgodnie z zapisami odpowiednio pkt 4.3.5.15 - 16,
(2) zgłoszenia ubytków generacji, w tym samoczynnych wyłączeń jednostek wytwórczych wraz z informacją o przewidywanym terminie ponownej synchronizacji z siecią,
(3) zgłoszenia przejścia jednostek wytwórczych do PPW,
(4) zgłoszenia zmiany trybu pracy regulatora turbiny,
(5) zgłoszenia zdarzeń ruchowych skutkujących zmianami mocy dyspozycyjnej jednostki wytwórczej,
(6) zgłoszenia niesprawności układów regulacji napięcia, mocy i częstotliwości wraz z przewidywanym terminem ich usunięcia,
(7) zgłoszenia niekorzystnych zjawisk występujących na pracujących jednostkach wytwórczych mających wpływ na utrzymanie w pracy jednostki wytwórczej w sieci,
(8) zgłoszenia przywrócenia pełnej gotowości jednostek wytwórczych do wytwarzania mocy lub zakończenie usuwania usterek bądź zakończenie pracy wymuszonej,
(9) inne istotne skutkujące zmianami dostępności do mocy czynnej i biernej jednostek wytwórczych.

4.3.5.18. Służby ruchowe DIRE JWCK są zobowiązane do realizacji poleceń otrzymanych od służb dyspozytorskich OSP i niezwłocznego przekazywania informacji o stanie pracy oraz stwierdzonych ograniczeniach w pracy JWCK w szczególności w zakresie wykonywania obowiązków wynikających z zapisów pkt 4.3.5.11 i 4.3.5.16 oraz:

(1) zgłoszenia awaryjnych odstawień lub przejścia jednostek wytwórczych do PPW,
(2) zgłoszenia zmiany trybu pracy regulatora turbiny na tryb statycznej regulacji prędkości obrotowej RO(P).

4.3.5.19. Sposób i tryb przekazywania planu obciążeń i poleceń ruchowych JWCD służbom ruchowym wytwórcy DIRE oraz sposób i tryb przekazywania danych i informacji przez służby ruchowe wytwórcy DIRE do służb dyspozytorskich OSP - KDM/OSP - ODM określa OSP.

OSP określa również wymagania dotyczące niezbędnego sprzętu, oprogramowania i systemów transmisji danych.

4.3.5.20. W przypadku samoczynnego wyłączenia z ruchu JWCD w wyniku awarii po
stronie wytwórcy służby ruchowe wytwórcy DIRE są zobowiązane do jak najszybszego poinformowania służb dyspozytorskich OSP - KDM o przyczynach wyłączenia oraz o przewidywanym czasie gotowości jednostki wytwórczej do ponownej synchronizacji z siecią. W przypadku JWCD przyłączonych do koordynowanej sieci 110 kV służby ruchowe wytwórcy DIRE są zobowiązane powiadomić również właściwe służby dyspozytorskie OSD. Na ponowną synchronizację wymagana jest zgoda służb dyspozytorskich OSP - KDM.

4.3.5.21. W przypadku samoczynnego wyłączenia z ruchu JWCD w wyniku awarii po stronie sieci przesyłowej służby dyspozytorskie OSP - KDM zobowiązane są do jak najszybszego poinformowania służb ruchowych wytwórcy DIRE o przewidywanym czasie gotowości jednostki do ponownej synchronizacji z siecią. W przypadku JWCD przyłączonych do koordynowanej sieci 110 kV obowiązek ten spoczywa na odpowiednich służbach dyspozytorskich OSD. Na ponowną synchronizację wymagana jest zgoda służb dyspozytorskich OSP - KDM.

4.3.5.22. Służby dyspozytorskie OSP - KDM wydają służbom ruchowym wytwórcy DIRE polecenia załączenia, odstawienia lub zmian parametrów nastawczych regulacji pierwotnej i wtórnej dla poszczególnych jednostek wytwórczych przewidzianych do pracy w tej regulacji.

4.3.5.23. Służby dyspozytorskie OSP - KDM sterują pracą jednostek wytwórczych biorących udział w regulacji wtórnej realizowanej zdalnie sygnałem sterującym z regulatora centralnego w zakresie i w sposób uzgodniony w dwustronnych umowach.

4.3.5.24. Służby dyspozytorskie OSP - KDM mogą polecić pracę jednostek wytwórczych z przeciążeniem lub z zaniżeniem mocy wytwarzanej jeśli przewidują to dwustronne umowy lub w przypadku zaistnienia stanów określonych w pkt 4.3.11.4.

4.3.5.25. Służby ruchowe wytwórcy DIRE jednostek wytwórczych biorących udział w regulacji pierwotnej lub wtórnej realizowanej zdalnym sygnałem sterującym z regulatora centralnego zobowiązane są do niezwłocznego informowania OSP o wszelkich usterkach powodujących ograniczenie zakresu lub parametrów realizacji tych funkcji.

4.3.5.26. Służby dyspozytorskie OSP, mogą wydać polecenie obniżenia generacji mocy czynnej jednostki wytwórczej przy zapewnieniu zwiększenia generacji mocy biernej zgodnie z wykresem kołowym generatora. DIRE elektrowni przy współpracy ze służbami dyspozytorskimi OSP dąży w tym przypadku do jak najdłuższego utrzymania jednostki wytwórczej w pracy poprzez odpowiednie dostosowanie obciążenia mocy czynnej i bierną generatora.

4.3.6. Planowanie pracy sieci zamkniętej

4.3.6.1. OSP w zakresie planowania pracy sieci zamkniętej:

(1) opracowuje układy pracy sieci przesyłowej oraz zatwierdza za
pośrednictwem właściwej spółki obszarowej OSP układy pracy koordynowanej sieci 110 kV, spełniające warunki wymienione w pkt 2.1.2.3,

(2) opracowuje plany wyłączeń elementów sieci przesyłowej z uwzględnieniem planów remontowych jednostek wytwórczych przyłączonych do sieci przesyłowej oraz za pośrednictwem właściwej spółki obszarowej OSP, zatwierdza plany wyłączeń elementów koordynowanej sieci 110 kV,

(3) opracowuje programy łączeniowe specjalne urządzeń i elementów sieci przesyłowej, będących w jego posiadaniu oraz w elementach sieci przesyłowej, będących własnością podmiotów do niej przyłączonych,

(4) zatwierdza za pośrednictwem właściwej spółki obszarowej OSP, programy łączeniowe specjalne w koordynowanej sieci 110 kV, dobiera nastawienia automatyk systemowych w sieci przesyłowej oraz dostarcza OSD nastawy tych automatyk w koordynowanej sieci 110 kV,

(5) planuje poziomy napięć w węzłach sieci przesyłowej oraz wykorzystanie źródeł mocy biernej przyłączonych do tej sieci,

(6) planuje za pośrednictwem właściwej spółki obszarowej OSP poziomy napięć w węzłach koordynowanej sieci 110 kV i wykorzystanie źródeł mocy biernej do nich przyłączonych, z uwzględnieniem propozycji OSD,

(7) prowadzi bazę danych sieciowych ewidencjonującą stany pracy sieci przesyłowej i za pośrednictwem właściwej spółki obszarowej OSP koordynowanej sieci 110 kV,

(8) opracowuje i udostępnia OSD za pośrednictwem właściwej spółki obszarowej OSP modele układow obliczeniowych sieci przesyłowej i elementów koordynowanej sieci 110 kV dla charakterystycznych pór roku i stref doby, niezbędne dla analiz niezawodności pracy,

(9) opracowuje procedury przeciwdziałania powstawaniu stanów awaryjnych i procedury likwidacji stanów awaryjnych w sieci przesyłowej oraz za pośrednictwem właściwej spółki obszarowej OSP, w uzgodnieniu z OSD w koordynowanej sieci 110 kV.

4.3.6.2. OSP wykorzystuje dostępne programy komputerowe do wykonywania analiz sieciowych niezbędnych w procesie planowania pracy sieci zamkniętej.

4.3.6.3. Operatorzy systemów dystrybucyjnych w zakresie planowania pracy sieci zamkniętej, za pośrednictwem właściwej spółki obszarowej OSP:

(1) zgłaszają propozycje planów wyłączeń dotyczących elementów koordynowanej sieci 110 kV,

(2) przygotowują programy łączeniowe specjalne w koordynowanej sieci 110 kV,

(3) dokonują nastawień automatyk systemowych w koordynowanej sieci
110 kV, z uwzględnieniem danych uzyskanych od OSP,

(4) opracowują propozycje planów poziomów napięć w węzłach koordynowanej sieci 110 kV oraz propozycje planów wykorzystania źródeł mocy biernej do nich przyłączonych,

(5) prowadzą bazę danych sieciowych i ewidencjonują stany pracy koordynowanej sieci 110 kV z terenu swojego działania,

(6) dostarczają dane do budowy modeli układów obliczeniowych KSE dla charakterystycznych pór roku, dni i stref doby.

4.3.6.4. Wytwórcy i odbiorcy końcowi przyłączeni do sieci przesyłowej, każdy dla swoich urządzeń, instalacji i sieci, w zakresie planowania pracy sieci zamkniętej:

(1) zgłaszają OSP propozycje wyłączeń elementów sieci i instalacji,

(2) przygotowują propozycje programów łączeniowych specjalnych,

(3) dostarczają dane do bazy danych ewidencjonującej stany pracy sieci,

(4) dostarczają dane do budowy modeli układów obliczeniowych KSE dla charakterystycznych pór roku, dni i stref doby.

4.3.6.5. Ustala się następujące rodzaje planów wyłączeń elementów sieci zamkniętej:

(1) plan roczny,

(2) plan miesięczny,

(3) plan tygodniowy,

(4) plan dobowy.

4.3.6.6. Plan wyłączeń elementów sieci zamkniętej OSP udostępnia podmiotom, których ten plan dotyczy, w następujących terminach:

(1) plan roczny - do dnia 30 listopada roku poprzedzającego, dla kolejnych trzech lat,

(2) plan miesięczny - dla marca do dnia 23 lutego, a dla pozostałych miesięcy do dnia 25 miesiąca poprzedzającego, na kolejny miesiąc;

(3) plan tygodniowy - do czwartku tygodnia poprzedzającego, obejmujący tydzień od soboty godz. 0:00 do piątku godz. 24:00;

(4) plan dobowy - do godziny 14:00 dnia poprzedzającego.

Plan dobowy może obejmować kilka kolejnych dni wolnych od pracy. W zakresie elementów koordynowanej sieci 110 kV OSP udostępnia plan wyłączeń za pośrednictwem spółek obszarowych OSP.

4.3.6.7. W celu umożliwienia terminowego opracowywania i zatwierdzania planów wyłączeń elementów sieci zamkniętej ustala się następujące terminy przekazywania zgłoszeń wyłączeń:

(1) do planu rocznego - do dnia 15-go września roku poprzedzającego;
(2) do planu miesięcznego - do 10-go dnia miesiąca poprzedzającego;
(3) do planu tygodniowego - do wtorku tygodnia poprzedzającego;
(4) do planu dobowego (korekta planu tygodniowego) - do godz. 11:00 dnia poprzedzającego.

4.3.6.8. Podmiot zgłaszający do OSP propozycję wyłączenia elementu sieci, określa:
(1) nazwę rozdzielni i elementu,
(2) proponowany termin wyłączenia,
(3) operatywną gotowość,
(4) typ wyłączenia (trwałe, codzienne),
(5) opis wykonywanych prac,
(6) inicjatora prac.

4.3.6.9. Podmiot zgłaszający do OSP wyłączenia o czasie trwania powyżej 2 tygodni, przedstawia harmonogram wykonywanych prac. OSP ma prawo zażądać od podmiotu zgłaszającego wyłączenie szczegółowego harmonogramu prac również w przypadku wyłączeń krótszych.

4.3.6.10. Harmonogramy wyłączeń, o których mowa w pkt 4.3.6.9 dostarczane są do OSP na 10 dni przed planowanym wyłączeniem elementów sieci przesyłowej a w przypadku koordynowanej sieci 110 kV na 7 dni przed planowanym wyłączeniem za pośrednictwem właściwej spółki obszarowej OSP.

4.3.6.11. Przyjmuje się ogólną zasadę, że terminy wyłączeń zatwierdzone w planach o dłuższym horyzoncie czasowym mają priorytet w stosunku do propozycji wyłączeń zgłaszanych do planów o krótszym horyzoncie czasowym.

W przypadku wyłączeń realizowanych na podstawie planów tygodniowych i dobowych, które nie były zatwierdzone w planach rocznych lub miesięcznych, nie ma zastosowania, obowiązek powiadamiania przez OSP z pięciiodniowym wyprzedzeniem o terminach i czasach planowanych przerw w dostarczaniu energii elektrycznej, związanych z tymi wyłączeniami, w miejscach dostarczania energii elektrycznej z sieci przesyłowej.

4.3.6.12. Planowanie układów pracy sieci zamkniętej wykonywane jest dla następujących okresów czasu:
(1) planowanie średnioterminowe, obejmujące analizy pracy sieci, uwzględniające nowe jednostki wytwórcze i nowe obiekty sieciowe oraz inne przewidywane zmiany warunków pracy sieci, a także identyfikację ograniczeń sieciowych - realizowane z wyprzedzeniem 3 lat w stosunku do przewidywanych zmian;
(2) planowanie sezonowe (zima, lato), obejmujące dla bieżącego roku analizy pracy sieci w warunkach ekstremalnych i wybór normalnych układów pracy dla okresu zimowego i letniego, a także zawierające listę ograniczeń sieciowych - realizowane odpowiednio do dnia 15 października i do dnia 15 kwietnia;
(3) planowanie bieżące, obejmujące analizy pewności pracy sieci dla potrzeb prowadzenia ruchu w okresie doby operatywnej i wybór układów jej pracy dla stanów remontowych i na wypadek wystąpienia awarii, a także obejmujące określenie ograniczeń sieciowych.

4.3.6.13. OSP przekazuje za pośrednictwem właściwej spółki obszarowej OSP informacje dotyczące zatwierdzonych układów pracy koordynowanej sieci 110 kV OSD w następujących terminach:

(1) normalny układ pracy sieci przewidziany na okres jesienno - zimowy wraz z oceną jego niezawodności i listą ograniczeń sieciowych - do dnia 30 października każdego roku;

(2) normalny układ pracy sieci przewidziany na okres letni wraz z oceną jego niezawodności i listą ograniczeń sieciowych - do dnia 30 kwietnia każdego roku;

(3) bieżące wytyczne prowadzenia ruchu obejmujące opisy remontowanych i awaryjnych układów pracy oraz sposób postępowania dyspozytorskiego przeciwdziałającego powstawaniu awarii i listą ograniczeń sieciowych - na bieżąco po każdorazowym wprowadzeniu zmian i uzupełnień;

(4) wymuszone układy pracy, nie przewidziane w wytycznych wymienionych w pkt (3) - w ramach dobowego planowania wyłączeń.

4.3.6.15. Programy łączeniowe specjalne opracowuje się w przypadku konieczności prowadzenia złożonych operacji łączeniowych w związku z wykonywanymi pracami sieciowymi lub próbami systemowymi.

4.3.6.16. Propozycje programów łączeniowych specjalnych w sieci zamkniętej są przekazywane OSP do zatwierdzenia w następujących terminach:

(1) programy łączeniowe specjalne nowych elementów w sieci przesyłowej na 14 dni, a w koordynowanej sieci 110 kV na 10 dni przed planowanym terminem łączenia;

(2) programy łączeniowe specjalne istniejących elementów w sieci przesyłowej na 10 dni, a w koordynowanej sieci 110 kV na 7 dni przed planowanym terminem łączenia.

Powyższe programy przekazywane są OSP za pośrednictwem właściwej spółki obszarowej OSP. Termy wymienione w pkt (1) - (2) nie dotyczą programów łączeniowych specjalnych wymuszonych procesem likwidacji awarii.

4.3.6.17. OSP przedstawia uwagi do zgłoszonych zgodnie z pkt 4.3.6.16 propozycji programów łączeniowych specjalnych w terminach:

(1) w przypadku programów łączeniowych specjalnych w sieci przesyłowej nie później niż 5 dni przed planowanym terminem
realizacji;

(2) w przypadku programów łączeniowych specjalnych w koordynowanej sieci 110 kV nie później niż 3 dni przed planowanym terminem realizacji.

4.3.6.18. OSP po otrzymaniu wersji programu łączeniowego specjalnego, uwzględniającego zgłoszone przez niego uwagi, najszybciej jak to możliwe przekazuje przedkładającemu go podmiotowi wstępną zgodę na jego realizację w zgłoszonym terminie. Przekazanie przez OSP ostatecznej zgody na realizację programu łączeniowego zainteresowanemu podmiotowi następuje w ramach planowania dobowego, nie później niż do godziny 14:00 dnia poprzedzającego jego realizację.

4.3.6.19. Program łączeniowy specjalny, powinien zawierać:

(1) stan wyjściowy łączników przed realizacją programu,
(2) szczegółowy opis operacji łączeniowych z zachowaniem kolejności,
(3) stany pracy i nastawienia zabezpieczeń i automatyk systemowych w poszczególnych fazach programu,
(4) schematy ułatwiające ocenę stanu pracy sieci w poszczególnych fazach programu,
(5) czas rozpoczęcia i czas przewidywanego zakończenia prób,
(6) dane katalogowe nowo zainstalowanej lub wymienianej aparatury.

4.3.6.20. OSP planuje układy pracy sieci zamkniętej, uwzględniając zasady bezpieczeństwa i warunki techniczne decydujące o niezawodności pracy sieci zgodnie z pkt 2.1.2.3.

4.3.6.21. Układy pracy sieci zamkniętej planuje się tak, aby zminimalizować występowanie ograniczeń sieciowych w pracy jednostek wytwórczych.

4.3.6.22. W stanach normalnych i awaryjnych, układy pracy rozdzielni w sieci przesyłowej oraz rozdzielni w koordynowanej sieci 110 kV planuje się w celu osiągnięcia możliwie najwyższego poziomu niezawodności pracy sieci z uwzględnieniem następujących kryteriów:

(1) symetrycznego rozdziału linii przyłączonych do rozdzielni pomiędzy poszczególne systemy szyn,
(2) minimalizacji przepływów mocy w sprzęgach,
(3) wykorzystania wszystkich układów szyn, jeśli jest to technicznie możliwe.

4.3.6.23. Dopuszcza się wyłączenie do rezerwy pojedynczych elementów sieci zamkniętej (linii elektroenergetycznych, transformatorów), jeśli:

(1) jest to ekonomicznie uzasadnione (zmniejszenie strat w sieci),
(2) warunki techniczne decydujące o niezawodności sieci utrzymują się w granicach określonych w pkt 2.1.2,
(3) zapewniona jest możliwość szybkiego załączenia elementu na polecenie właściwego operatora systemu.

4.3.6.24. W okresie odstawienia jednostek wytwórczych do rezerwy dopuszcza się po uzgodnieniu z OSP, realizację na liniach blokowych prac eksploatacyjnych, pod warunkiem, że czas operatywnej gotowości do załączenia linii blokowej będzie krótszy od czasu uruchamiania jednostki wytwórczej.

4.3.6.25. Planowane dane techniczne dotyczące elementów sieci zamkniętej, wymienione w pkt 2.1.1.3 powinny być dostarczane w terminach określonych przez OSP i wynikających z cykli tworzenia podstawowych modeli KSE, o których mowa w pkt 2.1.3.2. W przypadku nieplanowanych zmian ww. danych, powinny być one dostarczone do OSP niezwłocznie. Obowiązek powyższy spoczywa na podmiotach odpowiedzialnych za eksploatację tych elementów.

4.3.6.26. OSD dla wybranej zgodnie z pkt 4.3.6.27 doby letniej i doby zimowej przeprowadzają rejestrację stanów pracy koordynowanej sieci 110 kV obejmującą:

(1) bilans techniczne mocy czynnej i biernej węzłów sieci,
(2) rozpływ mocy czynnej i biernej.

4.3.6.27. OSP dokonuje wyboru dni oraz godzin rejestracji stanów pracy sieci i zawiadamia o tym OSD z co najmniej dwumiesięcznym wyprzedzeniem.

4.3.6.28. OSD dostarczają OSP, za pośrednictwem właściwej spółki obszarowej OSP wyniki rejestracji stanów pracy koordynowanych sieci 110 kV nie później niż po upływie miesiąca od dnia przeprowadzenia ewidencji.

4.3.7. Identyfikowanie ograniczeń sieciowych w sieci zamkniętej

4.3.7.1. OSP identyfikuje ograniczenia sieciowe ze względu na spełnienie wymagań niezawodności określonych w pkt 2.1.2.3.

4.3.7.2. OSP identyfikuje ograniczenia sieciowe jako:

(1) maksymalne dopuszczalne moce wytwarzane lub maksymalną liczbę jednostek wytwórczych pracujących w danym węźle lub grupie węzłów,
(2) minimalne niezbędne moce wytwarzane lub minimalną liczbę jednostek wytwórczych pracujących w danym węźle lub grupie węzłów,
(3) planowane ograniczenia przesyłowe na wskazanych przekrojach sieciowych, w tym ograniczenia wymiany międzysystemowej.

4.3.7.3. Identyfikacja ograniczeń sieciowych niezbędna dla sporządzania planów ograniczeń sieciowych, o których mowa w pkt 4.3.7.2 jest wykonywana przez OSP na podstawie analiz sieciowych uwzględniających:

(1) plan wyłączeń elementów sieci zamkniętej, opracowany zgodnie z zasadami zawartymi w pkt 4.3.6,
(2) plan remontów JWCD i JWCK,

(3) wymagania dotyczące jakości i niezawodności pracy sieci zamkniętej zawarte w pkt 2.1.2.

4.3.7.4. Analizy sieciowe dla potrzeb identyfikacji ograniczeń sieciowych w planach koordynacyjnych są realizowane przez OSP z wykorzystaniem dostępnych programów analitycznych i na bazie najbardziej aktualnych modeli matematycznych KSE.

4.3.7.5. Ograniczenia sieciowe są identyfikowane w cyklach pokrywających się z planami koordynacyjnymi oraz udostępniane w ramach planów koordynacyjnych.

4.3.8. Prowadzenie operacji łączeniowych w sieci zamkniętej

4.3.8.1. Miejscem prowadzenia operacji łączeniowych w sieci zamkniętej są stacje elektroenergetyczne

4.3.8.2. W sieci zamkniętej operacjami łączeniowymi kierują służby dyspozytorskie upoważnione przez właściwego operatora systemu, operacje łączeniowe wykonuje obsługa ruchowa stacji upoważniona przez właściciela. W stacjach wyposażonych w systemy zdalnego sterowania czynności łączeniowe mogą być wykonywane zdalnie przez służby dyspozytorskie upoważnione przez właściwego operatora systemu.

4.3.8.3. Kierowanie operacjami łączeniowymi przez służbę dyspozytorską polega na przekazaniu służbie ruchowej, upoważnionej do wykonywania operacji łączeniowych, jednoznacznego polecenia dotyczącego zakresu, kolejności i czasu wykonania tych operacji.

4.3.8.4. Operacje łączeniowe na urządzeniach elektroenergetycznych będących w ruchu lub pozostających w rezerwie mogą być wykonywane wyłącznie na polecenie lub za zgodą służby dyspozytorskiej upoważnionej przez właściwego operatora systemu.

4.3.8.5. Operacje łączeniowe w rozdzielniach sieci przesyłowej operacjami łączeniowymi kierują służby dyspozytorskie OSP - KDM/OSP - ODM. W polach linii blokowych i transformatorów potrzeb ogólnych elektrowni, po bezpośrednim uzyskaniu zgody służby dyspozytorskiej OSP - ODM, służba ruchowa wytwórcy DIRE w porozumieniu z obsługą ruchową stacji wykonuje zdalnie operacje łączeniowe lub poleca ich wykonanie obsłudze ruchowej stacji.

4.3.8.6. W rozdzielniach sieci przesyłowej operacjami łączeniowymi kierują służby dyspozytorskie OSP - KDM/OSP - ODM. W polach linii blokowych i transformatorów potrzeb ogólnych elektrowni, po bezpośrednim uzyskaniu zgody służby dyspozytorskiej OSP - ODM, służba ruchowa wytwórcy DIRE w porozumieniu z obsługą ruchową stacji wykonuje zdalnie operacje łączeniowe lub poleca ich wykonanie obsłudze ruchowej stacji.
kierują służby dyspozytorskie OSD. Zakres i czas przeprowadzenia tych operacji wymaga każdorazowo zgody służby dyspozytorskiej OSP - ODM. W polach linii blokowych i transformatorów potrzeb ogólnych elektrowni, po bezpośrednim uzyskaniu zgody służby dyspozytorskiej OSD, służy ruchowa wytwórcy DIRE w porozumieniu z obsługą ruchową stacji wykonuje zdalnie operacje łączeniowe lub poleca ich wykonanie obsłudze ruchowej stacji.

4.3.8.8. W polach 110 kV transformatorów NN/110 kV polecenia wykonania łącznościowych wydają służby dyspozytorskie OSP - ODM po każdorazowym uzyskaniu zgody służby dyspozytorskiej OSD, o ile instrukcja współpracy ruchowej stacji nie stanowi inaczej.

4.3.8.9. Upoważnione służby ruchowe mogą dokonywać operacji łącznościowych w rozdzielni bez zgody OSP lub OSD jedynie w przypadku zagrożenia życia ludzkiego lub zagrożenia zniszczeniem urządzeń. O wykonaniu operacji łącznościowych muszą niezwłocznie powiadomić właściwego operatora systemu.

4.3.8.10. OSP wspólnie z właściwym OSD oraz innymi podmiotami, których urządzenia przyłączone są do rozdzielni stacji NN/110 kV opracowują instrukcję współpracy służb dyspozytorskich i ruchowych w prowadzeniu ruchu stacji. Zatwierdzona instrukcja współpracy służb dyspozytorskich i ruchowych podlega zatwierdzeniu przez OSP.

4.3.8.11. Układy pracy sieci zamkniętej powstałe w wyniku prowadzonych operacji łącznościowych powinny spełniać warunki techniczne decydujące o niezawodności, wymienione w pkt. 2.1.2.3 Dopuszcza się krótkotrwałe odstępstwa od warunków technicznych decydujących o niezawodności dla układów przejściowych rozdzielni powstających w trakcie wykonywania sekwencji operacji łącznościowych.

4.3.8.12. W obszarze sieci zamkniętej polecenie wykonania operacji łącznościowych powodujących podanie napięcia na urządzenie wytwórcy, innego operatora, odbiorcy końcowego lub powodujących załączenie elementu systemu pod obciążenie wymaga wcześniejszego uzgodnienia z upoważnioną służbą dyspozytorską odpowiedzialną.

4.3.9. Działania regulacyjne w sieci zamkniętej

4.3.9.1. Działania regulacyjne w sieci zamkniętej obejmują:

(1) regulację mocy i częstotliwości,
4.3.9.2. KSE pracuje synchronicznie z systemami przesyłowymi operatorów zrzeszonych w ENTSO-E i obowiązuje w nim, w zakresie regulacji mocy i częstotliwości wymagania dotyczące regulacji pierwotnej, wtórnej oraz dokładności dotrzymywania salda uzgodnionej wymiany międzysystemowej określone w ENTSO-E/UCTE Operation Handbook. Za wypełnienie wymagań w zakresie regulacji częstotliwości i utrzymywania salda wymiany międzysystemowej odpowiada OSP.

4.3.9.3. Prowadząc regulację mocy i częstotliwości OSP wykorzystuje:
 (1) rezerwę regulacji pierwotnej,
 (2) rezerwę regulacji wtórnej.

4.3.9.4. OSP zapewnia realizację wymagań technicznych ENTSO-E/UCTE Operation Handbook dotyczących regulacji poprzez:
 (1) zapewnienie dostępu do wymaganego zakresu rezerw regulacji pierwotnej i regulacji wtórnej,
 (2) zapewnienie parametrów regulacji pierwotnej i regulacji wtórnej,
 (3) utrzymanie regulatora centralnego.

4.3.9.5. Minimalna wielkość wymaganej rezerwy regulacji pierwotnej wyznaczana jest corocznie w ramach ENTSO-E dla wszystkich systemów Europy kontynentalnej, zgodnie z zasadami określonymi w ENTSO-E/UCTE Operation Handbook.

4.3.9.6. Rozpoczęcie działania regulacji pierwotnej powinno nastąpić kilka sekund od momantu wystąpienia zakłócenia, przy czym do 50% pasma mocy regulacyjnej musi być uaktywnione w czasie nie dłuższym niż 15 s, a od 50 do 100% pasma mocy musi być uaktywnione w narastającym liniowo maksymalnym czasie do 30 s.

4.3.9.7. Rekomendowana wielkość rezerwy regulacji wtórnej jest zależna od przewidywanego zapotrzebowania na moc w KSE i wynika z zasad określonych w ENTSO-E/UCTE Operation Handbook.
Rezerwa regulacji wtórnej powinna pokryć niebilansowanie wynikające z:
 (1) zmienności zapotrzebowania i generacji w systemie,
 (2) utraty generacji największej jednostki w systemie.
W przypadkach, gdy występujące niebilansowanie nie może być pokryte przez regulację wtórną wówczas wielkość ta powinna być pokryta przez szybką regulację trójną.

4.3.9.8. Czas aktywizacji pełnego zakresu regulacji wtórnej nie może być dłuższy niż 15 minut.

4.3.9.9. OSP ustala typ, rodzaj i zakres wyposażenia koniecznego do prowadzenia automatycznej regulacji częstotliwości i mocy, w tym w szczególności:
(1) rodzaj i parametry regulatora centralnego oraz algorytm jego działania;
(2) rodzaj i parametry wykorzystywanych środków łączności;
(3) strukturę, algorytm działania i nastawienia układów automatyki w obiektach;
(4) środki służące do kontroli dyscypliny regulacyjnej.

4.3.9.10. OSP zapewnia aparaturę centralną, środki łączności do aparatury obiektowej oraz algorytymy i oprogramowanie konieczne do automatycznej regulacji częstotliwości i mocy.

4.3.9.11. Regulator centralny działa w oparciu o pomiary częstotliwości oraz mocy czynnej w uzgodnionych punktach pomiarowych na liniach międzysystemowych. Pomiary są pozyskiwane w cyklu 1 - 2 s.

4.3.9.12. Regulator centralny minimalizuje wielkość uchylów regulacji wyznaczaną z zależności:

\[E = ΔP + k \cdot Δf \]

gде:
\(ΔP \) - różnica zadanej i rzeczywistej wymiany międzysystemowej na regulowanym przekroju,
\(K \) - mocyowy równoważnik częstotliwości równy ilorazowi nadmiaru lub deficytu mocy w regulowanym obszarze do różnicy częstotliwości \(Δf \) wywołanej tą zmianą mocy.

\(Δf \) - różnica zadanej i rzeczywistej częstotliwości w KSE.

4.3.9.13. Wypracowane przez regulator centralny sygnały regulacyjne są przekazywane do jednostek wytwórczych uczestniczących w regulacji wtórnej.

(1) w ramach centralnego systemu automatycznej regulacji częstotliwości i mocy regulacja wtórna jest realizowana przez jednostki wytwórcze elektrowni cieplnych odpowiadające na zmianę dedykowanych sygnałów regulacyjnych \(ΔP_{wzdane} \) (wysyłanych z regulatora centralnego LFC) lub sygnału \(Y_1 \) (wysyłanego z regulatora centralnego LFC) oraz jednostki wytwórcze elektrowni wodnych odpowiadające na zmianę sygnału \(Y_{1s} \) (wysyłanego z regulatora centralnego ARCM);
(2) zadawanie obciążenia bazowego dla jednostek wytwórczych może być realizowane poprzez wykorzystanie:

(2.1.) bieżącego punktu pracy („BPP”), przy użyciu regulatora centralnego LFC,
(2.2.) bieżącego punktu pracy („BPP”), przy użyciu systemu SOWE,
(2.3.) sygnał Y_0, przy użyciu regulatora centralnego ARCM.

O trybie zadawania obciążenia bazowego z wykorzystaniem ww. sygnałów decyduje OSP.

4.3.9.15. Wyboru regulatora centralnego w KSE dokonuje Dyspozytor KDM biorąc pod uwagę dostępność jednostek wytwórczych przyłączonych do regulatora centralnego LFC oraz do regulatora centralnego ARCM.

4.3.9.16. Częstotliwość zadana dla regulatora centralnego wynosi 50,00 Hz. W przypadku, gdy różnica czasu astronomicznego i synchronicznego przekroczy zadaną wartość, następuje korekta czasu synchronicznego zgodnie z zasadami obowiązującymi w ENTSO-E.

4.3.9.17. Wytwórcy, których jednostki wytwórcze są technicznie przystosowane do pracy w regulacji pierwotnej są zobowiązani, na polecenie OSP, do udziału w regulacji pierwotnej, przy czym:

1. dla jednostek wytwórczych nie posiadających możliwości nastawiania strefy martwej, aktywacja regulacji pierwotnej odbywa się poprzez załączenie, na polecenie OSP, toru regulatorystycznego korytki mocy od częstotliwości;

2. dla jednostek wytwórczych posiadających możliwości nastawiania strefy martwej, aktywacja regulacji pierwotnej odbywa się poprzez ustawienie odpowiedniej strefy martwej na poziomie ustalonym przez OSP, przy stałe załączonym torze regulatorystycznym korytki mocy od częstotliwości;

3. wytwórcy zobowiązani są do utrzymywania nastawień parametrów regulacji pierwotnej zgodnie z poleceniem OSP;

4. wytwórcy zobowiązani są do informowanie o każdej zmianie parametrów pracy regulacji pierwotnej.

4.3.9.18. Wytwórcy, których jednostki wytwórcze przewidziane są do udziału w regulacji wtórnej zapewniają:

1. załączanie i odstawianie układu regulacji wtórnej wyłącznie na polecenie OSP,

2. utrzymywanie uzgodnionego z OSP zakresu regulacji wtórnej,

3. informowanie o każdej zmianie parametrów pracy układów regulacji wtórnej.

4.3.9.19. OSP we współpracy z podmiotami wymienionymi w pkt 4.3.9.23 prowadzi regulację napęć i rozpyłu mocy biernej w sieci zamkniętej dla:

1. utrzymywania napęć w węzłach sieci w granicach dopuszczalnych dla urządzeń sieciowych, określonych w pkt 2.1.2,

2. zapewnienia warunków stabilnej pracy KSE,

3. dotrzymania porozumień międzyoperatorskich w zakresie wymiany międzysystemowej mocy biernej na liniach wymiany
międzysystemowej,
(4) realizacji przesyłu energii elektrycznej siecią przy możliwie najniższych stratach mocy i energii,
(5) utrzymania napięć w rozdzielnikach 110 kV na poziomie proponowanym przez właściwych OSD, jeśli nie jest to sprzeczne z obowiązującymi warunkami technicznymi, decydującymi o niezawodności pracy sieci, określonymi w pkt 2.1.2.

4.3.9.20. Regulacja napięć i rozpływów mocy biernej obejmuje następujące działania przygotowawcze:
(1) określenie poziomów napięć i tworzenie planów wykorzystania źródeł mocy biernej oraz innych elementów regulacji w sieci zamkniętej, a następnie jego operacyjną realizację przez służby ruchowe,
(2) opracowanie zasad postępowania w awaryjnych stanach napięciowych,
(3) prowadzenie baz danych o urządzeniach pierwotnych i układach regulacji wykorzystywanych do regulacji napięć i mocy biernej, oraz operacyjne, odpowiednio do potrzeb poprawnej pracy systemu elektroenergetycznego:
(4) zadawania napięć w węzłach sieci,
(5) zadawania obciążenia mocą bierną jednostek wytwórczych (JWCD, JWCK),
(6) wydawania poleceń w zakresie wymaganej pracy automatyk regulacji napięć i mocy biernej, indywidualnie dla poszczególnych węzłów sieci,
(7) wydawania poleceń w zakresie załączania i wyłączania statycznych źródeł mocy biernej (dlawiki i kondensatory) zainstalowanych w KSE.

4.3.9.21. Urządzeniami pierwotnymi wykorzystywanymi do regulacji napięć i mocy biernej w sieci zamkniętej są:
(1) jednostki wytwórcze,
(2) kompensatory synchroniczne,
(3) kompensatory statyczne,
(4) dlawiki równoległe,
(5) baterie kondensatorów,
(6) transformatory z możliwością regulacji zaczepów pod obciążeniem.

4.3.9.22. W regulacji napięć i rozpływów mocy biernej w sieci zamkniętej wykorzystywane są następujące nadrzędne układy automatycznej regulacji:
(1) układy automatycznej regulacji napięć w oparciu o jednostki wytwórcze,
(2) układy automatycznej regulacji napięć w oparciu o transformatory.
4.3.9.23. Podmiotami współpracującymi z OSP przy regulacji napięć i mocy biernych w sieci zamkniętej są:
(1) wytwory zobowiązani, zgodnie z pkt 2.2.3.1.1, do posiadania układów regulacji napięcia przystosowanych do współpracy z układami ARNE,
(2) inni krajowi wytwórcy,
(3) OSD,
(4) odbiorcy końcowi przyłączeni do sieci zamkniętej.

4.3.9.24. OSP prowadzi regulację napięć i mocy biernych, zgodnie z pkt 4.3.9.19 w sieci zamkniętej, wykorzystując urządzenia do regulacji napięć wymienione w pkt 4.3.9.21 - 22. W tym celu służby dyspozytorskie OSP - ODM wydają stosowne polecenia służbom dyspozytorskim i ruchowym podmiotom wymienionych w pkt 4.3.9.23.

4.3.9.25. Podmioty wymienione w pkt 4.3.9.23 są zobowiązane do uzgadniania z OSP na okres nie krótszy niż jeden rok technicznych możliwości i warunków wykorzystywania urządzeń do regulacji napięć i mocy biernych.
Przedmiotem uzgodnień są w szczególności:
(1) zakresy dopuszczalnej pracy jednostek wytwórczych,
(2) typ i nastawienia parametrów układów wzbudzenia jednostek wytwórczych, w tym parametrów stabilizatorów systemowych,
(3) sposób wykorzystania układów ARNE,
(4) zakresy regulacji przekładni transformatorów,
(5) sposób wykorzystania układów ARST,
(6) parametry techniczne i lokalizacja kompensatorów synchronicznych i statycznych oraz dławików i baterii kondensatorów.

4.3.9.26. Podmioty wymienione w pkt 4.3.9.23 informują niezwłocznie OSP o zmianach parametrów urządzeń do regulacji napięcia i mocy biernych wymienionych w pkt 4.3.9.21 - 22.

4.3.10. Wprowadzanie przerw i ograniczeń w dostarczaniu i poborze energii elektrycznej

4.3.10.1. Postanowienia ogólne

4.3.10.1.1. Ograniczenia w dostarczaniu i poborze energii elektrycznej mogą być wprowadzone przez OSP, na czas oznaczony, w przypadku wystąpienia zagrożenia bezpieczeństwa dostaw energii elektrycznej lub w przypadku wprowadzenia przez Radę Ministrów w drodze rozporządzenia, na podstawie art. 11 ust. 7 ustawy Prawo energetyczne, ograniczeń w dostarczaniu i poborze energii elektrycznej.
Ograniczenia w dostarczaniu i poborze energii elektrycznej stanowią jeden
z komponentów umożliwiających OSP zapewnienie bezpieczeństwa dostaw energii elektrycznej.

4.3.10.1.2. Zagrożenie bezpieczeństwa dostaw energii elektrycznej może powstać w szczególności w następstwie:
(1) działań wynikających z wprowadzenia stanu nadzwyczajnego,
(2) katastrofy naturalnej albo bezpośredniego zagrożenia wystąpienia awarii technicznej,
(3) wprowadzenia embarga, blokady, ograniczenia lub braku dostaw paliw lub energii elektrycznej z innego kraju na terytorium Rzeczypospolitej Polskiej, lub zakłóceń w funkcjonowaniu systemów elektroenergetycznych połączonych z krajowym systemem elektroenergetycznym,
(4) strajku lub niepokojów społecznych,
(5) obniżenia dostępnych rezerw zdolności wytwórczych poniżej niezbędnych wielkości określonych w pkt 4.3.4 lub braku możliwości ich wykorzystania.

4.3.10.1.3. W przypadku wystąpienia zagrożenia bezpieczeństwa dostaw energii elektrycznej, w tym w przypadku wystąpienia awarii sieciowej lub awarii w systemie, OSP podejmuje we współpracy z użytkownikami systemu wszelkie możliwe działania przy wykorzystaniu dostępnych środków mających na celu usunięcie zagrożenia bezpieczeństwa dostaw energii elektrycznej i zapobieżenia jego negatywnym skutkom.

OSP w szczególności podejmuje następujące działania:
(1) wydaje polecenia uruchomienia, odstawienia, zmiany obciążenia lub odłączenia od sieci JWCD;
(2) dokonuje zakupów interwencyjnych mocy lub energii elektrycznej;
(3) wydaje OSD polecenia uruchomienia, odstawienia, zmiany obciążenia lub odłączenia od sieci nJWCD;
(4) wydaje OSD polecenia zmniejszenia ilości pobieranej energii elektrycznej przez odbiorców końcowych przyłączonych do sieci dystrybucyjnej na obszarze jego działania lub przerwania zasilania niezbędnej liczby odbiorców końcowych przyłączonych do sieci dystrybucyjnej na tym obszarze;
(5) dokonuje zmniejszenia wielkości zdolności przesyłowych wymiany międzysystemowej;
(6) po wyczerpaniu wszystkich możliwych działań zmierzających do pokrycia zapotrzebowania na energię elektryczną wydaje odbiorcom końcowym, przyłączonym bezpośrednio do sieci przesyłowej, polecenia zmniejszenia ilości pobieranej energii elektrycznej lub odłączenia od sieci urządzeń i instalacji należących do tych odbiorców, zgodnie z planem wprowadzania ograniczeń.
Powyższe działania podejmowane są przez OSP zgodnie z IRiESP, umowami zawieranymi przez OSP z użytkownikami systemu i zagranicznymi OSP, ENTSO-E/UCTE Operation Handbook, planami postępowania opracowywanymi na okoliczność wystąpienia zagrożenia bezpieczeństwa dostaw energii elektrycznej, instrukcjami powołanymi w pkt I.C.1.4 IRiESP - Część ogólna oraz procedurami dyspozytorskimi.

4.3.10.1.4. OSP niezwłocznie powiadamia ministra właściwego do spraw gospodarki oraz Prezesa URE o wystąpieniu zagrożenia bezpieczeństwa dostaw energii elektrycznej, podjętych działaniach i środkach w celu usunięcia tego zagrożenia i zapobieżenia jego negatywnym skutkom oraz zgłasza konieczność wprowadzenia ograniczeń w trybie normalnym.

4.3.10.1.5. OSP podaje do publicznej wiadomości komunikaty o wystąpieniu zagrożenia bezpieczeństwa dostaw energii elektrycznej i podejmowanych działaniach. Komunikaty te są publikowane na stronie internetowej OSP i na bieżąco wymieniane pomiędzy służbami dyspozytorskimi OSP a służbami dyspozytorskimi i ruchowymi użytkowników systemu.

4.3.10.1.6. OSP, w terminie 60 dni od dnia zniesienia ograniczeń, przedkłada ministrowi właściwemu do spraw gospodarki i Prezesowi URE raport zawierający ustalenia dotyczące przyczyn powstałego zagrożenia bezpieczeństwa dostaw energii elektrycznej, zasadności podjętych działań i zastosowanych środków w celu jego usunięcia, staranności i dbałości OSP, OSD oraz pozostałych użytkowników systemu o zapewnienie bezpieczeństwa dostaw energii elektrycznej. Powyższy raport uwzględnia ustalenia komisji, których działania określono w pkt 4.3.11.21 - 23.

4.3.10.1.7. Raport, o którym mowa w pkt 4.3.10.1.6 zawiera także wnioski i propozycje działań oraz określa środki mające zapobiec w przyszłości wystąpieniu zagrożenia bezpieczeństwa dostaw energii elektrycznej.

4.3.10.1.8. Przyjmuje się następujące tryby wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej:

(1) tryb normalny, określony w pkt 4.3.10.2;
(2) tryb normalny na polecenie OSP, określony w pkt 4.3.10.3;
(3) tryb awaryjny, określony w pkt 4.3.10.4;
(4) tryb automatyczny, określony w pkt 4.3.10.5;
(5) tryb ograniczenia poziomu napięć, określony w pkt 4.3.10.6.

4.3.10.2. Tryb normalny

4.3.10.2.1. Ograniczenia w trybie normalnym wprowadza Rada Ministrów, w drodze rozporządzenia, na podstawie art. 11 ust. 7 ustawy Prawo energetyczne, na wniosek ministra właściwego do spraw gospodarki. Ograniczenia w dostarczaniu i poborze energii elektrycznej wprowadzane są na czas oznaczony, na terytorium Rzeczypospolitej Polskiej lub jego części, w przypadku wystąpienia zagrożenia:
(1) bezpieczeństwa energetycznego Rzeczypospolitej Polskiej polegającego na długookresowym braku równowagi na rynku paliwowo - energetycznym,
(2) bezpieczeństwa dostaw energii elektrycznej,
(3) bezpieczeństwa osób,
(4) wystąpienia znacznych strat materialnych.

Ograniczenia w dostarczaniu i poborze energii elektrycznej mogą być wprowadzane po wyczerpaniu, przez operatorów we współpracy z zainteresowanymi podmiotami, wszelkich dostępnych środków, o których mowa w pkt 4.3.10.1.3, służących do zapewnienia prawidłowego funkcjonowania systemu elektroenergetycznego, przy dołożeniu należytjej staranności.

4.3.10.2.2. Wniosek, o którym mowa w pkt 4.3.10.2.1, sporządza minister właściwy dla spraw gospodarki z własnej inicjatywy lub na podstawie zgłoszenia OSP.

4.3.10.2.3. Zgłoszenie, o którym mowa w pkt 4.3.10.2.2 wraz z uzasadnieniem powinno być przekazane przez OSP do ministra właściwego do spraw gospodarki w terminach umożliwiających zapobieżenie zagrożeniom wymienionym w art. 11 ust. 1 ustawy Prawo energetyczne.

4.3.10.2.4. OSP we współpracy z OSD opracowuje plany wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej na wypadek wystąpienia okoliczności powołanych w pkt 4.3.10.2.1. Ograniczenia w dostarczaniu i poborze energii elektrycznej nie mogą powodować zagrożenia bezpieczeństwa osób oraz uszkodzenia lub zniszczenia obiektów technologicznych a także zakłóceń w funkcjonowaniu obiektów przeznaczonych do wykonywania zadań w zakresie bezpieczeństwa lub obronności państwa, opieki zdrowotnej, telekomunikacji, edukacji, wydobywania paliw kopalnych ze złoż, ich przeróbki i dostarczania do odbiorców, wytwarzania i dostarczania energii elektrycznej oraz ciepła do odbiorców oraz ochrony środowiska.

4.3.10.2.5. Ograniczenia w dostarczaniu i poborze energii elektrycznej wprowadzane w trybie normalnym mogą dotyczyć odbiorców o mocy umownej wyższej niż 300 kW.

4.3.10.2.6. Przyporządkowane odbiorcom, wymienionym w pkt 4.3.10.2.5, wielkości dopuszczalnego maksymalnego ograniczenia w dostarczaniu i poborze energii elektrycznej uwzględnia się w umowach zawartych z tymi odbiorcami.

4.3.10.2.7. Plany wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej, o których mowa w pkt 4.3.10.2.4 obowiązują dla okresu od dnia 1 września danego roku do dnia 31 sierpnia roku następnego i wymagają:
(1) uzgodnienia z Prezesem URE w przypadku planów opracowywanych przez OSP,
(2) uzgodnienia z OSP w przypadku planów opracowywanych przez OSD,
(3) uzgodnienia z OSD, posiadającymi bezpośrednie połączenie z siemią przesyłową OSP w przypadku planów opracowywanych przez OSDn,

(4) corocznej aktualizacji w terminie do dnia 31 sierpnia.

4.3.10.2.8. Plany wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej w trybie normalnym, sporządza się zgodnie z następującą procedurą:

(1) wystąpienie OSP do odbiorców przyłączonych do sieci przesyłowej oraz do OSD posiadających bezpośrednie połączenie z siemią przesyłową OSP w terminie do 1 marca każdego roku z wnioskiem o określenie wielkości ograniczeń w poborze mocy i minimalnego dobowego poboru energii elektrycznej w przypadku wprowadzania ograniczeń oraz maksymalnego czasu ograniczenia poboru mocy do poziomu minimalnego. Plany wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej należy opracować przy zapewnieniu bezpieczeństwa osób oraz zapobiegnięciu uszkodzenia lub zniszczenia obiektów technologicznych z uwzględnieniem ochrony odbiorców którzy podlegają ochronie na mocy rozporządzenia, o którym mowa w art. 11 ust. 6 ustawy Prawo energetyczne; dla OSD wielkości ograniczeń w poborze mocy oraz minimalny pobór energii elektrycznej dotyczą sumarycznych wielkości dla odbiorców przyłączonych do sieci OSD;

(2) przygotowanie przez OSD w terminie do 30 kwietnia każdego roku wstępnego planu wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej w stosunku do odbiorców przyłączonych do sieci dystrybucyjnej oraz przez OSP w stosunku do odbiorców przyłączonych do sieci przesyłowej;

(3) uzgodnienie planów wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej przygotowanych przez OSD z OSP oraz ich przekazanie przez OSP do uzgodnienia z Prezesem URE w terminie do 31 maja każdego roku;

(4) uzgodnienie, z Prezesem URE, planu wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej przygotowanego przez OSP;

(5) powiadomienie odbiorców, przez OSD i OSP, o planach wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej, w sposób przewidziany w rozporządzeniu, o którym mowa w art. 11 ust. 6 ustawy Prawo energetyczne.

W przypadku zmiany parametrów, o których mowa w pkt (1) odbiorcy przyłączeni do sieci przesyłowej oraz OSD są zobowiązani do powiadomienia o tym OSP, w formie pisemnej, w terminie 7 dni od zaistnialej zmiany.

4.3.10.2.9. Wielkości planowanych ograniczeń w dostarczaniu i poborze energii elektrycznej, ujęte w planach wprowadzania ograniczeń w dostarczaniu i
poborze energii elektrycznej, o których mowa w pkt 4.3.10.2.4, poprzez ograniczenie poboru mocy, określa się w stopniach zasilania od 11 do 20, przy czym:

1) 11 stopień zasilania określa, że odbiorca może pobierać moc do wysokości mocy umownej;
2) stopnie zasilania od 12 do 19 powinny zapewniać równomierne obniżanie mocy pobieranej przez odbiorcę;
3) 20 stopień zasilania określa, iż odbiorca może pobierać moc do wysokości ustalonego minimum, niepowodującego:
 (3.1) zagrożenia bezpieczeństwa osób oraz uszkodzenia lub zniszczenia obiektów technologicznych,
 (3.2) zakłóceń w funkcjonowaniu obiektów przeznaczonych do wykonywania zadań w zakresie: bezpieczeństwa lub obronności państwa określonych w przepisach odrębnych, opieki zdrowotnej, telekomunikacji, edukacji, wydobywania paliw kopalnych ze złóż, ich przetwarzania i dostarczania do odbiorców, wytwarzania i dostarczania energii elektrycznej oraz ciepła do odbiorców, ochrony środowiska.

Czas stref szczytowych i pozaszczytowych określa OSD w stosunku do odbiorców przyłączonych do sieci dystrybucyjnej i OSP w stosunku do odbiorców przyłączonych wyłącznie do sieci przesyłowej.

4.3.10.2.10. OSP opracowuje procedury wprowadzania w trybie normalnym ograniczeń w dostarczaniu i poborze energii elektrycznej przez odbiorców przyłączonych do sieci przesyłowej określające:

(1) sposób powiadomiania odbiorców,
(2) właściwe służby dyspozytorskie uprawnione do przekazywania poleceń.

4.3.10.2.11. OSP powiadamia odbiorców przyłączonych do sieci przesyłowej o planach i procedurach wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej w trybie normalnym, w sposób analogiczny jak dla informacji, o których mowa w pkt 5.1.

4.3.10.2.12. W przypadku wprowadzenia ograniczeń w dostarczaniu i poborze energii elektrycznej w trybie normalnym OSP, oprócz sposobu powiadomienia, o którym mowa w pkt 4.3.10.2.11, przekazuje stosowne komunikaty za pośrednictwem środków masowego przekazu zgodnie z zasadami określonymi w rozporządzeniu, o którym mowa w art. 11 ust. 6 ustawy Prawo energetyczne.

4.3.10.2.13. W przypadku zróżnicowania wprowadzonych ograniczeń w dostarczaniu i poborze energii elektrycznej w stosunku do ogłoszonych w komunikatach, o których mowa w pkt 4.3.10.2.12., OSP powiadamia odbiorców końcowych przyłączonych do sieci przesyłowej w sposób analogiczny jak dla informacji określonych w pkt 5.1. Powiadomienia te są dla odbiorcy obowiązujące w pierwszej kolejności w stosunku do powiadomień ogłaszanych w
komunikatach, o których mowa w pkt 4.3.10.2.12.

4.3.10.2.14. Odbiorcy objęci planem ograniczeń w dostarczaniu i poborze energii elektrycznej realizują polecenia dyspozytorskie dotyczące ograniczeń.

4.3.10.2.15. Odbiorcy objęci planem ograniczeń w dostarczaniu i poborze energii elektrycznej rejestrują w czasie trwania ograniczeń:
(1) polecone stopnie zasilania,
(2) wielkości poboru mocy w poszczególnych stopniach zasilania.

4.3.10.2.16. Postanowienia zawarte w pkt 4.3.10.2.10 - 15 mają odpowiednie zastosowanie do OSD i odbiorców podlegających ograniczeniom w dostarczaniu i poborze energii elektrycznej przyłączonych do sieci dystrybucyjnej.

4.3.10.3. **Tryb normalny na polecenie OSP**

4.3.10.3.1. W przypadku zagrożenia bezpieczeństwa dostaw energii elektrycznej OSP może wprowadzić ograniczenia w dostarczaniu i poborze energii elektrycznej na terytorium Rzeczypospolitej Polskiej lub jego części do czasu wejścia w życie przepisów, o których mowa w pkt 4.3.10.2.1, lecz nie dłużej niż na okres 72 godzin.

4.3.10.3.2. Plany wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej oraz procedury związane z wprowadzaniem ograniczeń opracowane dla trybu normalnego i opisane w pkt 4.3.10.2 mają zastosowanie w trybie normalnym na polecenie OSP.

4.3.10.3.3. W przypadku wprowadzenia ograniczeń w dostarczaniu i poborze energii elektrycznej w trybie normalnym na polecenie OSP, OSP przekazuje stosowne komunikaty o ograniczeniach, w sposób analogiczny jak dla informacji określonych w pkt 4.3.10.2.12. Wydanie stosownych komunikatów za pośrednictwem środków masowego przekazu zgodnie z zasadami określonymi w rozporządzeniu, o którym mowa w art. 11 ust. 6 ustawy Prawo energetyczne, następuje w możliwie najkrótszym terminie.

4.3.10.4. **Tryb awaryjny**

4.3.10.4.1. OSP może dokonać wyłączeń odbiorców w trybie awaryjnym w przypadku zagrożenia bezpieczeństwa dostaw energii elektrycznej lub wystąpienia zagrożenia bezpieczeństwa osób, jednak nie dłużej niż na okres 72 godzin.

4.3.10.4.2. Wyłączenia odbiorców według trybu awaryjnego, realizuje się na polecenie OSP jako wyłączenia awaryjne. W przypadku dokonania przez OSD wyłączeń odbiorców, w szczególności w związku z zagrożeniem bezpieczeństwa osób, OSD jest zobowiązany niezwłocznie powiadomić o tym fakcie służby dyspozytorskie OSP - ODM.

4.3.10.4.3. Wyłączenia awaryjne odbiorców powinny być zrealizowane bez zbędnej zwłoki, nie dłużej niż w czasie do 60 minut od wydania polecenia
dyspozytorskiego. Zmniejszenie poboru mocy czynnej o 20% (wprowadzenie ograniczeń w stopniach A1 i A2), powinno być zrealizowane bez zbednej zwłoki, nie dłużej niż w ciągu 15 minut od wydania polecenia dyspozytorskiego.

Ograniczenia w stopniu A3 powinny być zrealizowane bez zbednej zwłoki, nie dłużej niż w ciągu 30 minut od wydania polecenia dyspozytorskiego.

Ograniczenia w stopniu A4 powinny być zrealizowane bez zbednej zwłoki, nie dłużej niż w ciągu 45 minut od wydania polecenia dyspozytorskiego.

Ograniczenia w stopniu A5 powinny być zrealizowane bez zbednej zwłoki, nie dłużej niż w ciągu 60 minut od wydania polecenia dyspozytorskiego.

Wyłączenia awaryjne odbiorców nie mogą powodować zagrożenia bezpieczeństwa osób oraz zakłóceń w funkcjonowaniu obiektów wymienionych w pkt 4.3.10.2.9 (3) (3.2).

4.3.10.4.4. Wyłączenia awaryjne odbiorców powinny być zrealizowane poprzez wyłączenia linii o napięciu znamionowym 110 kV, transformatorów 110 kV/SN, linii i stacji średnich napięć, zmniejszenie ilości pobieranej energii elektrycznej przez odbiorców końcowych przyłączonych do sieci dystrybucyjnej, a po wyczerpaniu wszystkich możliwych działań zmierzających do pokrycia zapotrzebowania na energię elektryczną również poprzez zmniejszenie ilości pobieranej energii elektrycznej przez odbiorców końcowych przyłączonych do sieci przesyłowej, na obszarze wskazanym przez służby dyspozytorskie wydające decyzję o wprowadzeniu wyłączeń awaryjnych.

4.3.10.4.5. OSP w porozumieniu z OSD (dla każdego obszaru sieci dystrybucyjnej, o którym mowa w pkt 4.3.2.3) i odbiorcami końcowymi przyłączonymi do sieci przesyłowej ustala corocznie dla każdego miesiąca, dla prognozowanego zapotrzebowania na moc w dobowych szczytach tego zapotrzebowania dla typowych warunków pogodowych, wartości obniżenia poboru mocy czynnej w poszczególnych stopniach wyłączeń awaryjnych.

4.3.10.4.6. Opracowuje się optymalne plany wyłączeń awaryjnych dla których przyjmuje się pięciostopniową skalę wyłączeń: od A1 do A5. Stopnie A1-A5 powinny zapewniać równomierny spadek poboru mocy czynnej (każdy około 10%). Wyłączenie awaryjne w stopniu A5 powinno zapewnić zmniejszenie poboru mocy czynnej o 50% prognozowanego zapotrzebowania na moc w dobowych szczytach tego zapotrzebowania dla typowych warunków pogodowych.

4.3.10.4.7. Niezależnie od planów opracowywanych zgodnie z pkt 4.3.10.4.6, OSP może polecić wprowadzenie ograniczeń awaryjnych poprzez wskazanie:

(1) wartości mocy czynnej do wyłączenia przez OSD lub,

(2) obszaru sieci dystrybucyjnej, na którym należy wprowadzić ograniczenia, lub

(3) wartości mocy czynnej do wyłączenia przez odbiorcę końcowego przyłączonego do sieci przesyłowej.
4.3.10.4.8. Załączenia odbiorców wyłączonych w trybie awaryjnym odbywają się wyłącznie za zgodą OSP.

4.3.10.5. Tryb automatyczny

4.3.10.5.1. OSP określa zmiany wartości mocy czynnej wyłączanej przez automatykę SCO z podziałem pomiędzy poszczególnych OSD (dla każdego obszaru sieci dystrybucyjnej, o którym mowa w pkt 4.3.2.3), w terminie do 31 marca każdego roku. Wartości mocy są wyliczane dla poszczególnych stopni SCO w odniesieniu do szczytowego obciążenia KSE. Poszczególne stopnie SCO są ustalane dla zakresu częstotliwości między wartością górną 49 Hz i dolną 47,5 Hz. Urządzenia i instalacje odbiorców przyłączonych do sieci o napięciu znamionowym 6 kV lub wyższym powinny mieć zainstalowaną automatykę SCO. OSD powinien zapewnić możliwość wyłączania przez automatykę SCO mocy w wysokości co najmniej 50% zapotrzebowania szczytowego.

Odbiorca przyłączony bezpośrednio do sieci przesyłowej powinien zapewnić możliwość wyłączania przez automatykę SCO mocy w wysokości do 50% maksymalnego zapotrzebowania szczytowego.

4.3.10.5.2. OSD i odbiorcy końcowi przyłączeni bezpośrednio do sieci przesyłowej realizują wymagania z pkt 4.3.10.5.1 do 30 września każdego roku, zgodnie z zasadą możliwie równomiernego rozkładu mocy w sieci.

4.3.10.5.3. OSP w stosunku do odbiorców przyłączonych bezpośrednio do sieci przesyłowej oraz OSD w stosunku do odbiorców przyłączonych do sieci dystrybucyjnej o napięciu znamionowym 6 kV lub wyższym opracowują plany wyłączeń poprzez automatykę SCO. Odbiorcy, przekazują do właściwego operatora systemu informacje o zainstalowanej automatycie SCO i nastawach. OSD przekazuje do OSP informacje o zainstalowanej automatycie SCO i nastawach dla podległego mu obszaru sieci dystrybucyjnej.

4.3.10.5.4. OSP w odniesieniu do odbiorców przyłączonych bezpośrednio do sieci przesyłowej oraz OSD w odniesieniu do odbiorców przyłączonych do sieci dystrybucyjnej o napięciu znamionowym wyższym niż 6 kV mogą dokonać kontroli stanu realizacji wymagań dotyczących automatyki SCO, a w przypadku zadziałania automatyki SCO, ustalenia przyczyny i zakresu.

4.3.10.5.5. Załączenia odbiorców wyłączonych w trybie automatycznym odbywają się wyłącznie na polecenie OSP.

4.3.10.5.6. Postanowień pkt 4.3.10.5.1 - 5 nie stosuje się w odniesieniu do OSDp, do którego sieci przyłączony jest odbiorca końcowy zużywający co najmniej 50% zapotrzebowania na moc tego OSDp. W tym przypadku zmiany wartości mocy czynnej wyłączanej przez automatykę SCO powyższy OSDp zobowiązany jest uzgodnić z OSP indywidualnie, biorąc pod uwagę ograniczenia techniczne oraz zastosowane technologie urządzeń, instalacji i sieci.

Jeżeli OSP, biorąc pod uwagę ograniczenia techniczne oraz zastosowane technologie urządzeń, instalacji i sieci, zgłosi uzasadnione wątpliwości
dotyczące ilości mocy wyłączanej przez automatykę SCO, wówczas OSDp jest zobowiązany do przedłożenia OSP opinii niezależnej firmy eksperckiej, która dokona oceny w tym zakresie.

4.3.10.6. Tryb ograniczenia poziomu napięć

4.3.10.6.1. W przypadku zagrożenia bezpieczeństwa dostaw energii elektrycznej, OSP może dokonać ograniczenia poziomu napięcia po stronie SN, jednak nie dłużej niż na okres 72 godzin.

4.3.10.6.2. Ograniczenie poziomu napięć na danym obszarze powinno być zrealizowane na polecenie OSP poprzez:

(1) zablokowanie automatycznej regulacji napięć transformatorów 110 kV/SN i utrzymywanie poleconej bądź aktualnej pozycji przełącznika zaczepów transformatora 110 kV/SN, lub

(2) obniżenie o 5% zadanej napięcia SN układów automatycznej regulacji napięcia transformatorów 110 kV/SN.

4.3.10.6.3. Ograniczenie poziomu napięć powinno być zrealizowane bez zbędnej zwłoki, w czasie nie dłużej niż do 60 minut od wydania polecenia; zalecany czas wprowadzenia nie powinien przekraczać 30 min.

4.3.10.6.4. OSD i odbiorcy końcowi przyłączeni do sieci przesyłowej po wprowadzeniu trybu ograniczenia poziomu napięcia rejestrują w czasie trwania ograniczeń:

(1) poziom napięcia,

(2) pozycje przełączników zaczepów transformatorów 110 kV/SN,

(3) tryb pracy automatycznej regulacji napięć transformatorów 110 kV/SN.

4.3.11. Monitorowanie pracy systemu oraz zapobieganie zagrożeniu bezpieczeństwa dostaw energii elektrycznej

4.3.11.1. Służby dyspozytoryske operatorów systemu oraz służby ruchowe wytwórców i odbiorców końcowych przyłączonych do sieci zamkniętej, zgodnie z zakresem zadań określonym w pkt 4.3.2, w sposób ciągły monitorują pracę KSE wykorzystując systemy SCADA. Zakres zbieranych w sposób ciągły danych i sygnalizacji z sieci zamkniętej jest opisany w pkt 4.3.12.

4.3.11.2. Służby dyspozytoryskie w ramach swoich działań wykorzystują, opisane w IRiESP, dostępne środki techniczne i organizacyjne służące zaspokojeniu potrzeb odbiorców w energię elektryczną, oraz dokładają należytej staranności w celu dotrzymania wymaganej jakości i niezawodności pracy sieci zamkniętej określonych w pkt 2.1.2.

4.3.11.3. Operatorzy systemu są zobowiązani do zapewnienia ciągłej pracy i niezbędnej niezawodności systemów SCADA w obszarze sieci zamkniętej.

4.3.11.4. Podstawowym stanem pracy KSE wymagającym działań interwencyjnych służb dyspozytoryskich i służb ruchowych jest zagrożenie bezpieczeństwa
dostaw energii elektrycznej, w tym:

(1) awaria w systemie,
(2) awaria sieciowa.

Przyczyną wystąpienia zagrożenia bezpieczeństwa dostaw energii elektrycznej może być między innymi siła wyższa.

4.3.11.5. W przypadku wystąpienia zagrożenia bezpieczeństwa dostaw energii elektrycznej, OSP we współpracy z podmiotami wymienionymi w pkt 4.3.11.6 podejmuje niezbędne działania. Działania te powinny być nastawione na przywrócenie normalnego stanu pracy sieci.

4.3.11.6. Podmiotami współpracującymi z OSP w podejmowaniu działań niezbędnych z punktu widzenia przywrócenia wymaganego stanu jakości i niezawodności pracy sieci zamkniętej są:

(1) OSD,
(2) wytwórcy posiadający JWCD i JWCK,
(3) inni wytwórcy, jeżeli ich udział jest niezbędny do sprawnej likwicacji zagrożenia bezpieczeństwa dostaw energii elektrycznej,
(4) odbiorcy końcowi jeżeli ich udział jest niezbędny do sprawnej likwicacji zagrożenia bezpieczeństwa dostaw energii elektrycznej.

4.3.11.7. Wytwórcy zobowiązani są do przystosowania urządzeń i napędów pomocniczych każdej elektrowni lub elektrociepłowni, będących w ich posiadaniu, do utrzymania w pracy przynajmniej jednej jednostki wytwórczej w warunkach utraty połączenia z KSE lub zaniku napięcia w KSE.

4.3.11.8. Wytwórca, dla każdej, będącej w jego posiadaniu, elektrowni lub elektrociepłowni, zobowiązany jest do opracowania i posiadania aktualnego planu działania na wypadek utraty połączenia z KSE lub zaniku napięcia w KSE.

W przypadku, gdy jednostki wytwórcze elektrowni lub elektrociepłowni posiadają odpowiednio zdolności techniczne, o których mowa w pkt 4.3.11.7, to plan ten powinien uwzględniać działania mające na celu utrzymanie w pracy co najmniej jednej jednostki wytwórczej w warunkach utraty połączenia z KSE lub zaniku napięcia w KSE.

Wytwórcy zobowiązani są do bieżącej aktualizacji i uzgadniania ww. planów z właściwym operatorem systemu w trybie opisanym w pkt 4.3.11.25.

Wytwórcy zobowiązani są do przeprowadzania szkoleń obsługi, z zakresu wykorzystania planu działań na wypadek utraty połączenia z KSE lub zaniku napięcia w KSE.

4.3.11.9. Wytwórcy, których jednostki wytwórcze przyłączone są do sieci zamkniętej, dla każdej, będącej w jego posiadaniu, elektrowni lub elektrociepłowni, zobowiązani są do opracowania i bieżącej aktualizacji oraz przedstawienia OSP, w przypadku jednostek wytwórczych przyłączonych do koordynowanej sieci 110 kV za pośrednictwem OSD nie będących JWCD, planu działań w
warunkach utraty połączenia z KSE lub całkowitego zaniku napięcia w KSE oraz do przystosowania swoich urządzeń i napędów pomocniczych do utrzymania w pracy przynajmniej jednej jednostki wytwórczej w warunkach całkowitej utraty połączenia z KSE lub całkowitego zaniku napięcia w KSE, zgodnie z opracowanym planem.

4.3.11.10. OSP opracowuje i na bieżąco aktualizuje plan obrony i odbudowy KSE, z uwzględnieniem następujących założeń:

(1) przynajmniej jeden z wariantów planu odbudowy zakłada brak możliwości podania napięcia i mocy rozruchowej z połączonych synchronicznie sąsiednich systemów elektroenergetycznych,

(2) przy odbudowie KSE należy przyznać priorytet zasilaniu wytwórców,

(3) plany odbudowy powinny zapewniać jak najkrótszy czas odbudowy KSE,

(4) plany odbudowy należy opracować w zgodzie z ENTSO-E/UCTE Operation Handbook.

4.3.11.11. Plan obrony i odbudowy KSE obejmuje m.in. następujące elementy:

(1) schemat samoczynnych działań w przypadku spadku częstotliwości w KSE,

(2) schemat samoczynnych działań w przypadku wzrostu częstotliwości w KSE,

(3) plan wprowadzania ograniczeń w dostarczaniu i poborze energii elektrycznej podlegającej uzgodnieniu z Prezesem URE,

(4) plan wprowadzania ograniczeń w trybie awaryjnym i automatycznym zgodnie z zasadami opisanymi w pkt 4.3.10.4 - 5,

(5) instrukcję postępowania dyspozytorskiego w czasie awarii katastrofalnych i odbudowy KSE, w tym szczegółowe procedury dyspozytorskie odbudowy KSE takie jak instrukcje uruchomienia odstawionych z pracy jednostek wytwórczych przy wykorzystaniu jednostek wytwórczych gotowych do samostartu, instrukcje tworzenia układów wyspowych pracujących w oparciu o jednostki wytwórcze przystosowane do pracy w układach wydzielonych, wymienione w pkt 4.3.11.6 (2) - (3) opracowane we współpracy z wytwórcą oraz właściwym OSD.

4.3.11.12. Szczegółowe procedury dyspozytorskie, o których mowa w pkt 4.3.11.11 (5) obejmują m.in.:

(1) podział kompetencji poszczególnych szczebli służb dyspozytorskich,

(2) awaryjne układy pracy opracowane zgodnie z zasadami przedstawionymi w pkt 4.3.6,

(3) wykaz operacji ruchowych wykonywanych w poszczególnych fazach odbudowy KSE,

(4) dane techniczne niezbędne do realizacji odbudowy KSE,
(5) tryb i sposób wymiany informacji i poleceń dystrybucyjnych, w tym także z zastosowaniem procedur specjalnych.

Procedury te podlegają uzgodnieniu z właściwymi OSD, wytwórcami i odbiorcami końcowymi, przyłączonymi do sieci zamkniętej.

4.3.11.13. Operatorzy systemów dystrybucyjnych w uzgodnieniu z OSP opracowują i na bieżąco aktualizują procedury dystrybucyjne na okres odbudowy zasilania swoich fragmentów KSE obejmujących sieci dystrybucyjne i przyłączone do nich podmioty, zawierające m.in.:

(1) podział kompetencji poszczególnych szczebli służb dystrybucyjnych,
(2) awaryjne układy pracy opracowane zgodnie z zasadami przedstawionymi w pkt 4.3.6,
(3) wykaz operacji ruchowych wykonywanych w poszczególnych fazach odbudowy KSE,
(4) dane techniczne niezbędne do realizacji odbudowy KSE,
(5) tryb i sposób wymiany informacji i poleceń dystrybucyjnych, w tym także z zastosowaniem procedur specjalnych.

4.3.11.14. Odbiorcy wymienieni w pkt 4.3.11.6 (4) opracowują i na bieżąco aktualizują niezbędne procedury postępowania na wypadek wystąpienia zagrożenia bezpieczeństwa dostaw energii elektrycznej. Procedury postępowania powinny być uzgodnione z właściwymi operatorami systemu.

4.3.11.15. OSP, we współpracy z OSD przeprowadza likwidację zagrożenia bezpieczeństwa dostaw energii elektrycznej. W trakcie likwidacji zagrożenia bezpieczeństwa dostaw energii elektrycznej, OSP i OSD stosują, jeżeli to możliwe i celowe, opracowane elementy planu obrony i odbudowy, o których mowa w pkt 4.3.11.11 (3) - (5).

OSP udostępnia OSD, w zakresie właściwym dla obszaru ich działania, plan obrony i odbudowy KSE, za pośrednictwem właściwej spółki obszarowej OSP.

4.3.11.16. W przypadku wystąpienia zagrożenia bezpieczeństwa dostaw energii elektrycznej, podział kompetencji służb dystrybucyjnych opisany w pkt 4.3.2 pozostaje bez zmian, chyba, że wymienione w pkt 4.3.11.13 - 14 procedury dystrybucyjne stanowią inaczej.

4.3.11.17. W procesie likwidacji zagrożenia bezpieczeństwa dostaw energii elektrycznej dopuszcza się wprowadzenie przez OSP ograniczeń w dostarczaniu i poborze energii elektrycznej w trybie awaryjnym, zgodnie z procedurą określoną w pkt 4.3.10.4.

4.3.11.18. Podmioty wymienione w pkt 4.3.11.6 organizują i utrzymują system łączności dystrybucyjnej niezbędny do likwidacji zagrożenia bezpieczeństwa dostaw energii elektrycznej. System łączności dystrybucyjnej powinien pozwalać na rejestrację prowadzonej wymiany informacji.
4.3.11.19. Podmioty wymienione w pkt 4.3.11.6 powinny uczestniczyć w szkoleniach służb dyspozytorskich i ruchowych organizowanych przez OSP, w szczególności w zakresie realizacji zadań wynikających z realizacji procedur określonych w pkt 4.3.11.13 - 15.

4.3.11.20. Podmioty wymienione w pkt 4.3.11.6 zobowiązane są do zainstalowania urządzeń odbiorczych i nadawczych systemu łączności dyspozytorskiej, niezbędnego do likwidacji zagrożenia bezpieczeństwa dostaw energii elektrycznej.

4.3.11.21. W przypadku wystąpienia awarii w systemie lub awarii sieciowej, powoływana jest komisja, która ustala przebieg awarii i przyczyny jej powstania, a także proponuje działania zapobiegające powstaniu podobnej awarii w przyszłości. W pracach komisji biorą udział przedstawiciele podmiotów, o których mowa w pkt 4.3.11.6, których dotyczy awaria.

4.3.11.22. W przypadku wystąpienia awarii w systemie lub awarii sieciowej w sieci przesyłowej, komisję o której mowa w pkt 4.3.11.21 powołuje OSP. Natomiast w przypadku awarii sieciowej w koordynowanej sieci 110 kV komisję powołuje właściwy OSD w uzgodnieniu z OSP.

4.3.11.23. OSP ma prawo uczestniczyć w pracach komisji powoływanych przez OSD lub podmioty przyłączone do sieci zamkniętej. OSP i OSD przekazują sobie wzajemnie wnioski i zalecenia wynikające z protokołów z badania awarii i zakłóceń w sieci zamkniętej.

4.3.11.24. W celu realizacji planu utrzymania w pracy co najmniej jednej jednostki wytwórczej w warunkach utraty połączenia z KSE lub zaniku napięcia w KSE i umożliwienia wytwórcy udziału w procesie odbudowy KSE dopuszcza się prewencyjne przejście jednostki wytwórczej do pracy na potrzeby własne, poprzez wykorzystanie dodatkowych zabezpieczeń podnapięciowych i podczęstotliwościowych, przy czym nastawy parametrów krytycznych (poziom napięcia, poziom częstotliwości, zwłoki czasowe) powinny być uzgodnione z właścicielem systemu, zgodnie z trybem opisanym w pkt 4.3.11.25.

4.3.11.25. Plany, o których mowa w pkt 4.3.11.8, w tym nastawy dodatkowych zabezpieczeń podnapięciowych i podczęstotliwościowych wytwórca zobowiązany jest uzgodnić:

1) dla jednostek wytwórczych przyłączonych do sieci przesyłowej oraz pozostałych JWCD - z OSP;

2) dla jednostek wytwórczych o mocy osiągalnej 50 MW lub wyższej przyłączonych do koordynowanej sieci 110 kV, nie objętych pkt (1) - z OSD, przy czym OSD zobowiązany jest do dokonania odpowiednich uzgodnień z OSP;

3) dla pozostałych jednostek wytwórczych przyłączonych do sieci dystrybucyjnej - z OSD.

Ponadto, wytwórcy dla jednostek wytwórczych, wyszczególnionych w pkt (3), posiadających uzgodnione z OSP instrukcje i procedury dotyczące
udziału w procesie obrony i odbudowy KSE, zobowiązani są do przeprowadzenia uzgodnień z OSP poprzez OSD.

4.3.11.26. OSP może wydać polecenie zabezpieczenia przed utraceniem danych pomiarowych z zakresu pracy jednostek wytwórczych w stanach awaryjnych, w szczególności dla potrzeb prac komisji wymienionych w pkt 4.3.11.21 - 22.

4.3.11.27. Dane, o których mowa w pkt 4.3.11.26 ustalone są indywidualnie dla każdej jednostki wytwórczej z uwzględnieniem warunków jej pracy w rozpatrywanym okresie i obejmują w szczególności:

1) moc czynną i bierną mierzoną na zaciskach generatora,
2) napięcie na zaciskach generatora,
3) napięcie na rozdzielni potrzeb własnych jednostki wytwórczej i potrzeb ogólnych elektrowni,
4) działanie głównych układów zabezpieczeń technologicznych jednostki wytwórczej,
5) działanie zainstalowanej w torze wyprowadzenia mocy automatyki EAZ,
6) tryb pracy regulatorów turbin,
7) inne wielkości charakteryzujące przebieg procesu technologicznego produkcji energii.

4.3.12. Zdalne pozyskiwanie danych pomiarowych

4.3.12.1. Wymagania dotyczące zdalnego pozyskiwania danych pomiarowych

4.3.12.1.1. OSP zapewnia pozyskiwanie w trybie on-line danych, wymienionych w pkt 4.3.12.2.1 - 2, niezbędnych do monitorowania pracy rozdzielni i pól 750, 400, 220 i 110 kV będących w jego posiadaniu.

4.3.12.1.2. OSD zapewnia pozyskiwanie w trybie on-line danych, wymienionych w pkt 4.3.12.2.1 - 2, niezbędnych do monitorowania pracy rozdzielni 110 kV będących w jego posiadaniu.

4.3.12.1.3. Wytwórca zapewnia pozyskiwanie w trybie on-line danych, wymienionych w pkt 4.3.12.3.1 - 2, niezbędnych do monitorowania pracy JWCD i JWCK oraz rozdzielni 400, 220 i 110 kV będących w jego posiadaniu.

4.3.12.1.4. Odbiorca końcowy przyłączony do sieci zamkniętej zapewnia pozyskiwanie w trybie on-line danych, wymienionych w pkt 4.3.12.2.1 - 2, niezbędnych do monitorowania rozdzielni 400, 220 i 110 kV będących w jego posiadaniu.

4.3.12.1.5. OSP zapewnia urządzenia transmisyjne umożliwiające pracę łączy technologicznych i dyspozytorskich oraz transmisję w trybie on-line danych wymienionych w pkt 4.3.12.2 do systemów SCADA w centrach dyspozytorskich OSP.
4.3.12.1.6. OSD zapewnia urządzenia transmisyjne umożliwiające transmisję w trybie on-line danych wymienionych w pkt 4.3.12.2 do systemów SCADA w centrach dyspozytorskich OSD i umożliwia ich transmisję do systemów SCADA w centrach dyspozytorskich OSP.

4.3.12.1.7. Wytwórca zapewnia urządzenia transmisyjne i kanały komunikacyjne, umożliwiające transmisję w trybie on-line danych wymienionych w pkt 4.3.12.3 do systemów SCADA we właściwych centrach dyspozytorskich OSP lub OSD wg standardów określonych przez odpowiedniego operatora.

4.3.12.1.8. Odbiorca, wymieniony w pkt 4.3.12.1.4, zapewnia urządzenia transmisyjne i kanały komunikacyjne umożliwiające transmisję w trybie on-line danych wymienionych w pkt 4.3.12.2 do systemów SCADA we właściwych centrach dyspozytorskich OSP lub OSD według standardów określonych przez właściwego operatora.

4.3.12.1.9. OSP wyposaża systemy SCADA, w swoich centrach dyspozytorskich w urządzenia transmisyjne umożliwiające wymianę w trybie on-line danych, wymienionych w pkt 4.3.12.2 - 3, z systemami SCADA OSD, z wykorzystaniem protokołów, o których mowa w pkt 2.2.3.10.2.2.

4.3.12.1.10. OSD wyposaża systemy SCADA w swoich centrach dyspozytorskich, w urządzenia transmisyjne umożliwiające wymianę w trybie on-line danych, wymienionych w pkt 4.3.12.2 - 3, z systemami SCADA OSP, z wykorzystaniem protokołów o których mowa w pkt 2.2.3.10.2.2.

4.3.12.1.11. OSP i OSD, każdy dla swoich potrzeb, zapewnia kanały komunikacyjne o parametrach wystarczających dla realizacji funkcji wymienionych w pkt 4.3.12.1.5 - 6 i 4.3.12.1.9 - 10.

4.3.12.2. Wykaz danych pomiarowych z sieci zamkniętej

4.3.12.2.1. Pomiary z sieci zamkniętej obejmują:

(1) pomiary mocy czynnych i biernych, prądów oraz napięć ze wszystkich pól rozdzielni 750, 400, 220 i 110 kV, w tym w szczególności z pól: linii elektroenergetycznych 750, 400, 220 i 110 kV, transformatorów 750/400 kV, 400/220 kV, 400/110 kV i 220/110 kV, transformatorów NN/SN i 110/SN, w tym transformatorów potrzeb ogólnych elektrowni, transformatorów potrzeb własnych jednostek wytwórczych, sprzegiel (tylko moc czynna i bierna), urządzeń do kompensacji mocy bienernej (tylko moc bierna);

(2) pomiary częstotliwości ze wszystkich sekcji systemów szyn rozdzielni 750, 400 i 220 kV;

(3) pomiary napięć ze wszystkich sekcji systemów szyn rozdzielni 750, 400, 220 i 110 kV;

(4) pomiary mocy biernych na zaciskach urządzeń do kompensacji mocy bienernej przyłączonych do uzwojenia SN transformatorów o górnym napięciu 400 lub 220 kV;
(5) położenia przełączników zaczepek transformatorów 750/400 kV, 400/220 kV, 400/110 kV, 220/110 kV i 220/SN;
(6) położenia przełączników fazy transformatorów 400/220 kV;
(7) położenia przełączników zaczepek transformatorów sprzężających NN/110, NN/SN i 110/SN farm wiatrowych, wyprowadzających moc bezpośrednio do rozdzielni 400, 220 i 110 kV.

4.3.12.2.2. Sygnalizacje stanów pracy urządzeń w rozdzielniach sieci zamkniętej obejmują:
(1) sygnalizacje stanu wyłączników i odłączników ze wszystkich pól rozdzielni 750, 400, 220 i 110 kV, w tym w szczególności z pól wymienionych w pkt 4.3.12.2.1 (1);
(2) sygnalizacje stanu uziemników z pól linii wymiany międzysystemowej w rozdzielniach 750, 400, 220 i 110 kV;
(3) sygnalizacje stanu łączników urządzeń do kompensacji mocy biernej przyłączonych do uzuwienia SN transformatorów o górnym napięciu 400 lub 220 kV.

4.3.12.3. Wykaz danych pomiarowych pobieranych z elektrowni
4.3.12.3.1. Pomiary z elektrowni obejmują:
(1) pomiary mocy czynnej i biernej na zaciskach generatorowych (brutto), dla każdej JWCD i JWCK przyłączonej do sieci o napięciu znamionowym 400, 220 i 110 kV,
(2) pomiary mocy czynnej i biernej potrzeb własnych jednostki wytwórczej, dla każdej JWCD i JWCK przyłączonej do sieci o napięciu znamionowym 400, 220 i 110 kV,
(3) pomiary mocy czynnej i biernej, na zaciskach generatorowych (brutto) oraz za transformatorem blokowym (netto), dla każdej jednostki wytwórczej wchodzącej w skład elektrowni wydzielonej,
(4) pomiary sumarycznej wartości mocy czynnej i biernej brutto dla każdej elektrowni, w których pracują jednostki wytwórcze nie będące ani JWCD, ani JWCK,
(5) pomiary napięć na zaciskach generatorowych dla każdej JWCD i JWCK przyłączonej do sieci o napięciu znamionowym 400, 220 i 110 kV,
(6) pomiary napięć na zaciskach generatorowych dla każdej jednostki wytwórczej wchodzącej w skład elektrowni wydzielonej,
(7) położenia przełączników zaczepek transformatorów blokowych NN/SN dla każdej JWCD i JWCK wyprowadzającej moc do rozdzielni 400, 220 lub 110 kV,
(8) położenia przełącznika zaczepek transformatorów NN/SN i 110/SN, do których podłączone są jednostki wytwórcze elektrowni wydzielonych,
(9) pomiar poziomu wody zbiorników górnego i dolnego elektrowni szczytowo - pompowych i poziomu wody zbiornika górnego pozostałych elektrowni wodnych posiadających JWCD lub JWCK,

(10) stan pracy regulacji ARNE,

(11) nastawy ograniczników mocy biernej dostępnej dla ARNE.

4.3.12.3.2. Sygnalizacja stanów pracy urządzeń w rozdziałniach elektrowni obejmuje:

(1) sygnalizację stanu wyłączników i odląźników po stronie napięcia generatorowego, dla każdej JWCD i JWCK przyłączonej do sieci o napięciu znamionowym 400, 220 i 110 kV,

(2) sygnalizację stanu wyłączników i odląźników po stronie napięcia SN, dla każdej jednostki wytwórczej elektrowni wydzielonych,

(3) sygnalizację stanu pracy jednostek elektrowni szczytowo - pompowych.

4.3.12.4. Wymagania dotyczące jakości danych

4.3.12.4.1. Źródłem pomiarów mocy, prądów i napięć, o których mowa w pkt 4.3.12.2.1 i 4.3.12.3.1, są rdzenie pomiarowe przekładników prądowych i napięciowych. Dokładność rdzeni nie może być gorsza niż wymagana dla klasy 0,5. Zalecana klasa dokładności rdzeni pomiarowych w ciągach wytwarzania JWCD i JWCK oraz wykorzystywanych dla potrzeb centralnego systemu automatycznej regulacji częstotliwości i mocy wynosi 0,2.

4.3.12.4.2. Maksymalny uchyl wnoszony do toru pomiarowego przez obwody wtórne przekładnika nie może przekraczać wielkości dopuszczalnych dla uchylu zastosowanego przekładnika.

4.3.12.4.3. Aparatura przetwarzająca dane uzyskane z przekładników musi mieć klasę dokładności nie gorszą niż klasa 0,2.

4.3.12.4.4. Aparatura zastosowana do pozyskania, przetwarzania i transmisji danych musi zapewnić odnawianie danych pomiarowych w systemach SCADA OSP w odstępach czasu nie dłuższych niż 2 s.

4.3.12.4.5. Aparatura zastosowana do pozyskania, przetwarzania i transmisji danych musi zapewnić odnawianie danych pomiarowych w centralnym systemie automatycznej regulacji częstotliwości i mocy, w odstępach czasu nie dłuższych niż 1 s.

4.3.13. Systemy wymiany informacji i sterowania wykorzystywane dla prowadzenia ruchu sieciowego

4.3.13.1. Wymiana informacji i sterowanie obiektami elektroenergetycznymi w ramach prowadzenia ruchu sieciowego w KSE odbywa się za pomocą:

(1) systemu operatywnej współpracy z elektrowniami,

(2) systemu monitorowania parametrów pracy jednostek,
4.3.13.2. W wymagania techniczne dla systemów SOWE, SCADA i SMPP zostały szczegółowo określone w pkt 2.2.3.9 - 11, natomiast wymagania techniczne dla centralnego systemu automatycznej regulacji częstotliwości i mocy, w pkt 2.2.3.3.2.1 i 4.3.9.

4.3.13.3. Opis funkcjonalny systemów teleinformatycznych, o których mowa w pkt 4.3.13.1 (1) - (4) został przedstawiony odpowiednio w pkt 6.2 - 6.4 i 6.6.

4.3.14. Centralny rejestr jednostek wytwórczych i farm wiatrowych w KSE

4.3.14.1. OSP prowadzi Centralny rejestr jednostek wytwórczych i farm wiatrowych przyłączonych do KSE o mocy osiagalnej równej 5 MW i wyższej (dalej „Centralny rejestr jednostek wytwórczych”).

4.3.14.2. Zgłoszenie nowych jednostek wytwórczych i farm wiatrowych do Centralnego rejestru jednostek wytwórczych oraz dokonywanie zmian w zakresie zarejestrowanych danych jest obowiązkiem wytwórców.

4.3.14.3. Wytwórcy posiadający JWCD, JWCK lub farmy wiatrowe o mocy równej 50 MW lub wyższej dokonują zgłoszenia nowych jednostek wytwórczych oraz zmian w zakresie zarejestrowanych danych bezpośrednio do OSP z kopią do właściwej spółki obszarowej OSP.

4.3.14.4. W przypadku wytwórców posiadających JWCD, JWCK lub farmy wiatrowe o mocy równej 50 MW lub wyższej, przyłączone do sieci dystrybucyjnej, obowiązkiem wytwórcy jest informowanie właściwego OSD o zgłoszeniu do zarejestrowania mocy osiagalnej i zainstalowanej lub o zgłoszeniu zmiany danych w Centralnym rejestrze jednostek wytwórczych.

4.3.14.5. Wytwórcy posiadający jednostki wytwórcze lub farmy wiatrowe o mocy poniżej 50 MW dokonują zgłoszeń nowych jednostek wytwórczych oraz zmian w zakresie zarejestrowanych danych do OSP za pośrednictwem właściwego OSD.

4.3.14.6. Nowe konwencjonalne jednostki wytwórcze przekazywane do eksploatacji muszą mieć określone: moc znamionowe, osiagalne i minimum techniczne. Wartość mocy znamionowej, osiagalnej i minimum technicznych jednostki wytwórczej jest określona przez producenta, przy czym wartość mocy znamionowej wynika z wielkości mocy określonych na tabliczkach znamionowych urządzeń wchodzących w skład danej jednostki wytwórczej. Jednostki wytwórcze farm wiatrowych muszą mieć odkrośloną przez producenta charakterystykę produkowanej mocy czynnej w funkcji prędkości wiatru.

4.3.14.7. Wielkości podlegające rejestracji przez OSP dla JWCD, w szczególności obejmują:

(3) systemu SCADA,
(4) centralnego systemu automatycznej regulacji częstotliwości i mocy.
(1) moc osiągalną [MW],
(2) minimum techniczne jednostki wytwórczej [MW],
(3) zakres regulacji pierwotnej [±MW],
(4) zakres regulacji wtórnej [±MW],
(5) wartości dopuszczalnych bieżących punktów pracy dla poszczególnych znaczników regulacji (BPP_{min}, n, BPP_{max}, n) [MW],
(6) maksymalną zmianę mocy między poszczególnymi bieżącymi punktami pracy (BPP) w aktualizowanym planie BPKD [MW],
(7) współczynnik dociągania [MW/min],
(8) współczynnik odciągania [MW/min],
(9) modelowe charakterystyki rozruchowe bloku ze stanu gorącego, ciepłego i zimnego,
(10) typ jednostki wytwórczej,
(11) inne dane techniczne wymienione w pkt 2.1.1.3.5.

4.3.14.8. Wielkości podlegające rejestracji przez OSP dla JWCK, w szczególności obejmują:
(1) moc osiągalną [MW],
(2) minimum techniczne jednostki wytwórczej [MW],
(3) współczynnik brutto - netto [-],
(4) inne dane techniczne wymienione w pkt 2.1.1.3.5.

4.3.14.10. Test odbiorowy mocy osiągalnej obejmuje:
(1) dla elektrowni cieplnej - nie krótszą niż 15-godzinną pracę bloku, na paliwie podstawowym,
(2) dla elektrowni wodnej przepływowej - nie mniej niż 5-godzinną pracę hydrozespołu,
(3) dla elektrowni wodnej szczotowo - pompowej - pracę hydrozespołu przez okres uzgodniony z OSP, zależny od pojemności zbiornika głównego, jednak nie mniej niż 5 godzin,
z mocą deklarowaną przez wytwórce jako osiągalna, przy znamionowych
warunkach pracy.

Podczas testu moc jednostki wytwórczej powinna być utrzymywana w sposób trwały na poziomie deklarowanej mocy osiągalnej z dokładnością nie mniejszą niż 1% deklarowanej mocy osiągalnej pod warunkiem, że średni poziom mocy uzyskany w czasie trwania całego testu osiągnął wartość deklarowanej mocy osiągalnej oraz zapewniona zostanie poprawna (bezzakłóceniowa) praca podstawowych układów technologicznych i urządzeń potrzeb własnych jednostki wytwórczej i potrzeb ogólnych elektrowni, wpływających na poziom mocy generowanej. Warunkiem przyjęcia nowej wartości mocy jest wykazanie możliwości generacji mocy biernej, przy deklarowanej mocy osiągalnej, zgodnie z wymaganiami pkt 2.2.3.3.1.26.

W indywidualnych przypadkach w czasie trwania testu, dopuszcza się pojedyncze, krótkotrwałe, ale nie dłuższe niż 5 min. odchylenia mocy od poziomu deklarowanej mocy osiągalnej o wartości nie wyższej niż 5% deklarowanej mocy osiągalnej, pod warunkiem, że średni poziom mocy uzyskany w danym, 15-minutowym okresie osiągnął wartość deklarowanej mocy osiągalnej.

OSP zastrzega sobie prawo do uczestnictwa w przeprowadzanych próbach odbiorowych JWCK i JWCD.

4.3.14.11. Test odbiorowy minimum technicznego jednostek wytwórczych obejmuje:

(1) dla elektrowni cieplnej - 4 próby 8-godzinnej pracy bloku, podczas której jednostka wytwórcza elektrowni cieplnej pracuje w sposób trwały przy zachowaniu zdolności do pracy w regulacji pierwotnej i wtórnej, jeżeli dana jednostka ma obowiązek świadczenia regulacyjnych usług systemowych w zakresie udziału w regulacji pierwotnej lub wtórnej,

(2) dla elektrowni wodnej przepływowej oraz szczytowo-pompowej - pracę hydrozespołu przez okres uzgodniony z OSP, zależny od warunków hydrologicznych,

z mocą nie wyższą od mocy deklarowanej przez wytwórcę jako minimum techniczne jednostki wytwórczej, przy znamionowych warunkach pracy. Próbę uznaje się za pozytywną jeśli jednostka wytwórcza utrzyma podczas każdej z prób w sposób ciągły, moc bloku na poziomie nie wyższym niż deklarowana, przy zachowaniu pozostałych parametrów w granicach bezpiecznej pracy urządzeń. OSP zastrzega sobie prawo do uczestnictwa w przeprowadzanych próbach odbiorowych JWCK i JWCD.

4.3.14.12. Testy odbiorowe mocy osiągalnej i minimum technicznego konwencjonalnej jednostki wytwórczej, przeprowadza wytwórca przy współudziale niezależnej firmy eksperckiej, w przypadku JWCK i JWCD uzgodnionej z OSP.

4.3.14.13. Rejestracja zmienionej mocy osiągalnej lub minimum technicznego JWCD lub JWCK w Centralnym rejestrze jednostek wytwórczych odbywa się zgodnie z następującą procedurą:
(1) wytwórca informuje pisemnie OSP oraz właściwą spółkę obszarową OSP o planach przeprowadzenia testu odbiorowego mocy osiągalnej lub minimum technicznego dla JWCK i JWCD z 7-dniowym wyprzedzeniem. Niniejszy wniosek powinien zawierać opis przeprowadzonej modernizacji, która uzasadnia zmianę mocy osiągalnej lub minimum technicznego jednostki wytwórczej.

(2) po pomyślnym zakończeniu testu odbiorowego określonego w pkt 4.3.14.10 - 11, wytwórca sporządza protokół z przeprowadzonych pomiarów oraz występuje z pisemnym wnioskiem do OSP z kopią wystąpienia do właściwej spółki obszarowej OSP o wprowadzenie zmian do stosownych umów i dokonanie aktualizacji w Centralnym rejestrze jednostek wytwórczych, z zastrzeżeniem pkt 4.3.14.16,

(3) po uzyskaniu protokołu oraz wystąpieniu wytwórcy o zmianę mocy osiągalnej lub minimum technicznego jednostki wytwórczej OSP wprowadza stosowne zmiany w Centralnym rejestrze jednostek wytwórczych,

(4) data obowiązywania nowej mocy wynika z terminu wejścia w życie aneksów do stosownych umów przesyłania.

4.3.14.14. Rejestracja nowej mocy osiągalnej lub minimum technicznego JWCD, JWCK lub farmy wiatrowej o mocy równej 50 MW lub wyższej, w Centralnym rejestrze jednostek wytwórczych odbywa się zgodnie z następującą procedurą:

(1) wytwórca występuje pisemnie z wnioskiem do OSP z kopią wystąpienia do właściwej spółki obszarowej OSP o rejestrację nowej jednostki wytwórczej lub farmy wiatrowej na okres wstępnej eksploatacji po zakończeniu inwestycji. Wniosek powinien zawierać datę planowanej synchronizacji z siecią oraz parametry mocowe nowej jednostki wytwórczej lub farmy wiatrowej, z zachowaniem postanowień pkt 4.3.14.9,

(2) po uzyskaniu wniosku wytwórcy OSP wprowadza stosowne zmiany w centralnym rejestrze jednostek wytwórczych,

(3) data obowiązywania nowej mocy wynika z terminu wejścia w życie aneksów do stosownych umów przesyłania. OSP informuje pisemnie wytwórcę o dacie przyjęcia nowych mocy do eksploatacji,

(4) po zakończeniu okresu wstępnej eksploatacji JWCD lub JWCK, po zakończeniu inwestycji, wytwórca przeprowadza testy odbiorowe określone w pkt 4.3.14.10 - 11,

(5) wytwórca dokonuje przekazania jednostki wytwórczej z inwestycji do eksploatacji przez rejestrację jednostki wytwórczej w Centralnym rejestrze jednostek wytwórczych z mocą projektową lub zmienioną, zgodnie z procedurą jak dla rejestracji zmienionej mocy osiągalnej, określoną w pkt 4.3.14.13.

Dla farm wiatrowych nie wymaga się przeprowadzania odbiorowych testów.
mocy, a w centralnym rejestrze odnotowuje się moc znamionową farmy i moc osiągalną, zakładając początkowo, że jest ona równa mocy znamionowej. Wyniki testów, o których mowa w pkt 2.2.3.3.11 przekazywane są operatorowi systemu z ewentualnym wnioskiem o korektę mocy osiągalnej farmy.

4.3.14.15. Przyjęcie do eksploatacji nowych lub zmodernizowanych obiektowych układów regulacji w Centralnym rejestrze jednostek wytwórczych oraz parametrów technicznych jednostek wytwórczych odbywa się zgodnie z następującą procedurą:

1) wytwórca informuje pisemnie OSP oraz właściwą spółkę obszarową OSP o zamiarach przeprowadzenia testów obiektowych układów regulacji z 14-dniowym wyprzedzeniem. Niniejszy wniosek powinien zawierać opis przeprowadzonej modernizacji, która uzasadnia zmiany parametrów obiektowych układów regulacji;

2) po pomyślnym zakończeniu wytwórca sporządza protokół z przeprowadzonych pomiarów oraz występuje z pisemnym wnioskiem do OSP z kopią wystąpienia do właściwej spółki obszarowej OSP o wprowadzenie zmian w Centralnym rejestrze jednostek wytwórczych;

3) po uzyskaniu protokołu z przeprowadzonych testów oraz wniosku elektrowni, o którym mowa w pkt (2), OSP wprowadza stosowne zmiany w Centralnym rejestrze jednostek wytwórczych;

4) OSP informuje pisemnie wytwórcę o dacie przyjęcia nowych parametrów obiektowych układów regulacji do eksploatacji.

4.3.14.16. Po podwyższeniu mocy osiągalnej lub obniżeniu minimum technicznego JWCD wytwórca zobowiązany jest do dostosowania zakresu regulacyjnego bloku (regulacji pierwotnej i wtórnej) do wielkości wynikającej z nowych wartości mocy, w terminie do 1-go miesiąca od przeprowadzenia testów odbiorczych mocy osiągalnej lub minimalnym technicznym jednostki wytwórczej. Po uzyskaniu pozytywnego wyniku testów odbiorczych układów regulacji zmiany wynikające z podwyższenia mocy osiągalnej lub obniżenia minimum technicznego bloku będą wprowadzone w drodze aneksu do umowy przesyłania oraz umów, na podstawie których świadczono są usługi systemowe.

4.3.14.17. Wytwórca ma prawo wgląd do danych zawartych w Centralnym rejestrze jednostek wytwórczych, w zakresie dotyczącym jego własnych jednostek wytwórczych.
5. WYMIANA INFORMACJI POMIĘDZY OSP A UŻYTKOWNIKAMI SYSTEMU

5.1. Formy wymiany informacji

5.1.1. Postanowienia ogólne

5.1.1.1. Wymiana informacji pomiędzy OSP a użytkownikami systemu może się odbywać:

(1) poprzez systemy teleinformatyczne,
(2) telefonicznie,
(3) drogą elektroniczną,
(4) faksem,
(5) listownie,
(6) poprzez publikację na stronie internetowej,
(7) poprzez udostępnienie do publicznego wglądu w siedzibie OSP.

Wykorzystanie ww. form dla konkretnych informacji określa OSP, o ile forma wymiany informacji nie została określona przez obowiązujące przepisy.

5.1.1.2. Do systemów teleinformatycznych służących do zbierania, przekazywania i wymiany informacji, o których mowa w pkt 5.1.1.1 (1), zalicza się:

(1) system wymiany informacji o rynku energii (WIRE),
(2) system operatywnej współpracy z elektrowniami (SOWE),
(3) system prowadzenia ruchu i sterowania pracą KSE (SCADA),
(4) system monitorowania parametrów pracy jednostek (SMPP),
(5) centralny system pomiarowo - rozliczeniowy (CSPR),
(6) centralny system automatycznej regulacji częstotliwości i mocy.

Architektura oraz funkcje ww. systemów teleinformatycznych zostały szczegółowo scharakteryzowane w pkt 6.1 - 6.6.

5.1.1.3. Wymagania dotyczące protokołów i standardów wykorzystywanych przez systemy teleinformatyczne, o których mowa w pkt 5.1.1.2 (1), zostały szczegółowo omówione w:

(1) system WIRE - pkt 2.2.3.8.2,
(2) system SOWE - pkt 2.2.3.9.2,
(3) system SCADA - pkt 2.2.3.10.2,
(4) system SMPP - pkt 2.2.3.11.2.
5.1.1.4. W przypadku awarii systemów informatycznych, w zakresie wymiany informacji, OSP podejmuje następujące działania:
(1) informuje zainteresowane podmioty o awarii w możliwie najkrótszym czasie,
(2) informuje o warunkach obowiązujących podczas awarii,
(3) informuje o rozwoju sytuacji.

5.1.1.5. Wymiana informacji może być realizowana za pomocą poczty elektronicznej, w postaci krótkich notatek, komunikatów lub plików tekstowych, a także w postaci bezpośrednio przekazywanych plików tekstowych lub innych dokumentów elektronicznych.

5.1.1.6. Informacje przekazywane w formie, o której mowa w pkt 5.1.1.5, powinny być autoryzowane przez osoby upoważnione, które znajdują się w wykazach osób upoważnionych, tworzonych zgodnie z pkt 4.3.2.15.

5.1.2. Strona internetowa OSP

5.1.2.1. Strona internetowa OSP jest wykorzystywana przez OSP jako platforma publikacji i udostępniania informacji zainteresowanym podmiotom.

5.1.2.2. Strona internetowa OSP jest dostępna pod adresem: www.pse.pl.

5.2. Zakres informacji publikowanych przez OSP

5.2.1. W ramach udostępniania użytkownikom systemu, informacji o warunkach świadczenia usług przesyłania niezbędnych do uzyskania dostępu do sieci przesyłowej, korzystania z tej sieci i KSE oraz pracy KSE, OSP publikuje na swojej stronie internetowej w szczególności:
(1) IRiESP;
(2) Taryfę OSP;
(3) wyciąg z planu rozwoju, uzgodnionego z Prezesem URE;
(4) komunikaty o wystąpieniu zagrożenia bezpieczeństwa dostaw energii elektrycznej i podejmowanych działaniach;
(5) informacje, o których mowa w pkt 5.2.2-8, 6.1.1.4, 6.1.5.6.3, 6.2.1.4, 6.2.5.3.4, 6.2.5.4.2.

5.2.2. W zakresie przyłączania do sieci przesyłowej OSP urządzeń wytwórczych, sieci dystrybucyjnych, urządzeń odbiorcich końcowych, połączeń międzysystemowych oraz linii bezpośrednich, OSP na swojej stronie internetowej publikuje:
(1) wzory wniosków o określenie warunków przyłączenia;
(2) informacje dotyczące:
 (2.1) podmiotów ubiegających się o przyłączenie źródeł do sieci przesyłowej, lokalizacji przyłączeń, mocy przyłączeniowej,
rodzaju instalacji, dat wydania warunków przyłączenia, zawarcia umów o przyłączenie do sieci i rozpoczęcia dostarczania energii elektrycznej,

(2.2) wartości łącznej dostępnej mocy przyłączeniowej dla źródeł, a także planowanych zmianach tych wartości w okresie kolejnych 5 lat od dnia ich publikacji, dla całej sieci OSP z podziałem na stacje elektroenergetyczne lub ich grupy wchodzące w skład sieci przesyłowej. Wartość łącznej mocy przyłączeniowej jest pomniejszana o moc wynikającą z wydanych i ważnych warunków przyłączenia źródeł do sieci elektroenergetycznej.

Informacje, o których mowa w pkt (2.1)-(2.2) OSP publikuje z zachowaniem przepisów o ochronie informacji niejawnych lub innych informacji prawnie chronionych i aktualizuje je co najmniej raz na kwartał, uwzględniając dokonaną rozbudowę i modernizację sieci oraz realizowane i będące w trakcie realizacji przyłączenia.

5.2.3. W zakresie dotyczącym pracy KSE, OSP na swojej stronie internetowej publikuje w szczególności plany i raporty oraz wskaźniki dotyczące pracy KSE w poszczególnych okresach: dobowych, miesięcznych i rocznych.

5.2.4. W zakresie wymiany międzysystemowej, OSP na swojej stronie internetowej publikuje:

(1) wzór wniosku o nadanie kodu identyfikacyjnego EIC oraz wykaz kodów EIC nadanych przez polskie Biuro Kodów EIC;
(2) zasady wyznaczania zdolności przesyłowych na liniach wymiany międzysystemowej;
(3) zasady rezerwacji zdolności przesyłowych wymiany międzysystemowej;
(4) wielkości technicznych zdolności przesyłowych (TTC/NTC) wymiany międzysystemowej;
(5) niezbędne wielkości rezerw zdolności przesyłowych wymiany międzysystemowej (TRM) w kierunku eksportowym i importowym;
(6) informacje o rezultatach przetargów na zdolności przesyłowe wymiany międzysystemowej;
(7) dane teleadresowe polskiego Biura Kodów EIC.

5.2.5. W ramach świadczonych przez OSP usług przesyłania i udostępniania KSE, OSP na swojej stronie internetowej publikuje:

(1) wzór wniosku o zawarcie umowy przesyłania;
(2) standardy umów przesyłania i umów udostępniania KSE.

5.2.6. W zakresie odpowiedzialności odszkodowawczej, OSP na swojej stronie internetowej publikuje wzór wniosku o odszkodowanie.

5.2.7. W zakresie systemów teleinformatycznych, OSP na swojej stronie internetowej publikuje:
(1) szczegółowe wymagania wobec sprzętu, oprogramowania narzędziowego i systemowego dla systemów współpracujących z systemami OSP;
(2) standardy techniczne dokumentów elektronicznych wymienianych pomiędzy OSP a użytkownikami systemu;
(3) wymagania bezpieczeństwa w zakresie wymiany danych systemów współpracujących z systemami OSP;
(4) procedury organizacyjne i techniczne dotyczące współpracy systemów informatycznych OSP i użytkowników systemu, w tym w szczególności procedury przyłączania, wprowadzania zmian oraz nadawania uprawnień.

5.2.8. OSP na swojej stronie internetowej publikuje również:
(1) dane i informacje dotyczące bilansowania systemu i zarządzania ograniczeniami systemowymi, szczegółowe określone w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi;
(2) zasady kodyfikacji jednostek wytwórczych oraz adres, na który należy kierować wnioski o wydanie świadectwa pochodzenia;
(3) standardy techniczne OSP stosowane w sieci przesyłowej;
(4) standardy kodyfikacji Fizycznych Punktów Pomiarowych (FPP) oraz Miejsce Dostarczania Energii Rynku Bilansującego (FDMB) reprezentujących dostawy energii we fragmentach sieci dystrybucyjnej nie objętej obszarem Rynku Bilansującego;
(5) informacje o strukturze organizacyjnej OSP, w tym w szczególności schemat organizacyjny, zakres zadań realizowanych przez poszczególne jednostki organizacyjne oraz dane teleadresowe;
(6) szczegółowe wytyczne do oceny stanu technicznego eksploatowanej sieci przesyłowej;
(7) wzory formularzy stosowane do oceny stanu technicznego eksploatowanych obiektów, układów, urządzeń i instalacji.

5.3. Ochrona informacji

5.3.1. W stosunku do informacji otrzymanych od użytkowników systemu, jak również w stosunku do informacji dotyczących umów zawartych z tymi podmiotami, OSP jest zobowiązany przestrzegać przepisów o ochronie informacji niejawnych i innych informacji prawnie chronionych.

5.3.2. Informacje, o których mowa w pkt 5.3.1 mogą być wykorzystywane przez OSP jedynie w celu realizacji jego obowiązków wynikających z zawartej z danym użytkownikiem systemu umowy, jak również w celu realizacji zadań OSP określonych przepisami prawa krajowego (w tym w szczególności ustawy Prawo energetyczne wraz z przepisami aktów wykonawczych), prawa Unii Europejskiej i IRiESP w sposób wyłączający możliwość spowodowania
zagrożenia lub naruszenia prawnie chronionych interesów użytkownika systemu.

5.3.3. Obowiązek zachowania w tajemnicy informacji, o których mowa w pkt 5.3.1, trwa także po zakończeniu okresu obowiązywania zawartej przez OSP z tym użytkownikiem systemu umowy, nie dłużej jednak niż 5 lat od jej wygaśnięcia lub rozwiązania.

5.3.4. Postanowienia dotyczące ochrony informacji zawarte powyżej, nie będą stanowiły przeszkody dla OSP w ujawnianiu informacji konsultantom i podwykonawcom działającym w imieniu i na rzecz OSP przy wykonywaniu zadań określonych przepisami prawa krajowego (w tym w szczególności ustawy Prawo energetyczne wraz z przepisami aktów wykonawczych), prawa Unii Europejskiej i IRiESP, z zastrzeżeniem zachowania wymogów określonych w pkt 5.3.5 oraz w ujawnianiu informacji, która należy do informacji powszechnie znanych lub informacji, których ujawnienie jest wymagane na podstawie obowiązujących przepisów prawa, w tym przepisów dotyczących obowiązków informacyjnych spółek publicznych, lub na ujawnienie których użytkownik systemu wyraził zgodę na piśmie. OSP jest również uprawniony do ujawnienia informacji działając w celu zastosowania się do postanowień IRiESP, wymagań organu regulacyjnego, w związku z toczącym się postępowaniem sądowym lub postępowaniem przed organem regulacyjnym.

5.3.5. OSP zapewnia, że wszystkie podmioty, które w jego imieniu i na jego rzecz będą uczestniczyły w realizacji zadań określonych przepisami prawa krajowego (w tym w szczególności ustawy Prawo energetyczne wraz z przepisami aktów wykonawczych), prawa Unii Europejskiej i IRiESP zostaną przez OSP zobowiązane do zachowania w tajemnicy informacji, o których mowa w pkt 5.3.1, na warunkach określonych w pkt 5.3.1 - 4.

5.3.6. Postanowienia pkt 5.3.1 - 5 obowiązują odpowiednio użytkowników systemu w zakresie ochrony przez nich i ich konsultantów oraz podwykonawców, informacji otrzymanych od OSP jak również w stosunku do informacji dotyczących umów zawartych z OSP.
6. SYSTEMY TELEINFORMATYCZNE WYKORZYSTYWANE PRZEZ OSP

6.1. System wymiany informacji o rynku energii

6.1.1. Zadania systemu WIRE

6.1.1.1. System WIRE jest dedykowany do wymiany informacji pomiędzy OSP a podmiotami uprawnionymi do wymiany informacji z OSP zgodnie z IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi (dalej „operatorzy rynku”).

6.1.1.2. System WIRE jest dedykowany do zbierania, przekazywania i wymiany informacji na rynku energii w obszarze rynku bilansującego.

6.1.1.3. System WIRE służy jako narzędzie i platforma wymiany informacji handlowej, w postaci standardowych dokumentów elektronicznych.

6.1.1.4. Szczegółowy opis i wymagania funkcjonalne systemu WIRE zawierają standardy techniczne systemu WIRE, które OSP publikuje na swojej stronie internetowej.

6.1.2. Architektura systemu WIRE

6.1.2.1. Architektura systemu WIRE obejmuje centralny moduł komunikacyjny systemu WIRE w wersji dla OSP, moduły zewnętrzne WIRE/UR w wersji dla operatorów rynku oraz moduł rezerwowy WIRE/RP.

6.1.2.2. Wymiana informacji pomiędzy modułem centralnym systemu WIRE oraz modułami WIRE/UR odbywa się w topologii „gwiazdy”, tzn. komunikacja możliwa jest tylko pomiędzy serwerem centralnym systemu WIRE znajdującym się u OSP, a serwerami lokalnymi systemu WIRE zlokalizowanymi u operatorów rynku.

6.1.3. Struktura funkcjonalna i wymagania aplikacyjne WIRE

6.1.3.1. Moduł centralny, znajdujący się u OSP, realizuje odbieranie i wysyłanie dokumentów z/do systemów informatycznych operatorów rynku z zachowaniem kontroli i zabezpieczeń przesyłanych danych.

6.1.3.2. Moduł centralny systemu WIRE zapewnia archiwizację wszystkich przesyłanych informacji oraz udostępnia archiwum dokumentów autoryzowanym użytkownikom.

6.1.3.3. Moduł rezerwowy WIRE/RP zlokalizowany u OSP umożliwia przekazywanie zgłoszeń umów sprzedaży, ofert bilansujących oraz grafików wymiany międzysystemowej, w sytuacjach awarii modułu WIRE/UR lub awarii dedykowanych łączy komunikacyjnych.
6.1.3.4. Moduły lokalne WIRE/UR, zlokalizowane u operatorów rynku, umożliwiają dostęp do modułu centralnego oraz wymianę danych z zachowaniem standardów określonych dla systemu WIRE w zakresie struktury dokumentów, zabezpieczeń i kontroli przesyłanych danych.

6.1.3.5. Centrum Certyfikacji OSP (CCO) realizuje funkcje związane z zarządzaniem certyfikatami cyfrowymi wykorzystywanymi w systemie WIRE. Umożliwia autoryzację certyfikatów menedżerów kolejek WebSphere MQ jednoznacznie identyfikujących serwery WIRE/UR operatorów rynku.

6.1.3.6. Wymagania techniczne dla systemu WIRE są określone w pkt 2.2.3.8.

6.1.4. **Zakres przesyłanych informacji przy wykorzystaniu WIRE**

6.1.4.1. System WIRE obejmuje wymianę informacji w zakresie: zgłoszeń umów sprzedaży oraz ofert bilansujących, zgłoszeń grafików wymiany międzysystemowej, planów koordynacyjnych oraz danych pomiarowych i pomiarowo - rozliczeniowych energii oraz danych rozliczeniowych. Szczegółowy zakres informacji handlowych wymienianych za pomocą systemu WIRE zamieszczono w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

6.1.5. **Procedury systemu WIRE**

6.1.5.1. **Zakres procedur systemu WIRE**

6.1.5.1.1. Zarządzanie konfiguracją systemu WIRE odbywa się zgodnie z procedurami regulującymi procesy przyłączania nowych operatorów rynku, zarządzania zmianami w standardach oraz zmianami w konfiguracji.

6.1.5.1.2. OSP publikuje procedury dotyczące systemu WIRE na swojej stronie internetowej.

6.1.5.2. **Procedura przyłączenia i akceptacji systemu informatycznego WIRE/UR do systemów informatycznych OSP dla WIRE/UR i WIRE**

6.1.5.2.1. Przyłączenie i akceptacja systemu informatycznego WIRE/UR do systemu informatycznego OSP następuje po spełnieniu przez podmiot warunków określonych w procedurze przyłączania i akceptacji określonej przez OSP.

6.1.5.2.2. Procedura przyłączenia i akceptacji systemów WIRE ma zastosowanie w procesie uruchamiania systemów informatycznych WIRE/UR operatorów rynku. Procedura obejmuje zagadnienia techniczne dotyczące współpracy systemów bezpieczeństwa i systemów wymiany informacji OSP i operatorów rynku.
6.1.5.3. **Procedura zarządzania uprawnieniami archiwum WIRE**

6.1.5.3.1. Autoryzacja użytkowników systemów informatycznych WIRE/UR następuje po spełnieniu przez podmiot warunków określonych w procedurze zarządzania uprawnieniami użytkowników archiwum systemu WIRE, opracowanej przez OSP.

6.1.5.3.2. Procedura zarządzania uprawnieniami archiwum systemu WIRE zawiera kroki jakie powinien wykonać administrator bezpieczeństwa operatora rynku, w celu uzyskania dostępu do archiwum systemu WIRE dla reprezentantów operatora rynku, upoważnionych przez operatora rynku do przeglądania dokumentów przechowywanych w archiwum systemu WIRE.

6.1.5.3.3. Archiwum systemu WIRE jest udostępniane wyłącznie upoważnionym do przeglądania dokumentów reprezentantom operatorów rynku, w zakresie dokumentów wymienianych pomiędzy OSP i odpowiednim operatorem rynku.

6.1.5.4. **Procedura testów systemu rezerwowego przekazywania zgłoszeń WIRE/RP dla operatorów rynku**

6.1.5.4.1. Procedura testów systemu rezerwowego przekazywania zgłoszeń WIRE/RP dla operatorów rynku obejmuje proces testowania rozwiązań systemu WIRE/RP przez operatorów rynku, niezbędny dla poprawnego użytkowania modułu przez reprezentantów operatorów rynku.

6.1.5.4.2. Moduł rezerwowy systemu WIRE/RP jest udostępniony wyłącznie autoryzowanym reprezentantom operatorów rynku.

6.1.5.5. **Procedura testów uzupełniających zakres działania operatorów rynku**

6.1.5.5.1. Procedura testów uzupełniających zakres działania operatorów rynku zawiera kroki jakie powinnyвыkonać OSP oraz operatorzy rynku, celem rozszerzenia zakresu działania operatorów rynku na rynku bilansującym.

6.1.5.5.2. Procedura testów uzupełniających zakres działania operatorów rynku ma zastosowanie podczas zmiany funkcji operatora rynku z operatora handlowego na operatora handlowo - technicznego lub rozszerzenia zakresu funkcji o dysponowanie jednostkami grafikowymi wymiany międzysystemowej uczestnika rynku bilansującego.

6.1.5.6. **Procedura wprowadzania zmian w standardach technicznych systemu WIRE**

6.1.5.6.1. Wprowadzenie zmian w standardach technicznych WIRE wymaga dostosowania systemów WIRE/UR przez operatorów rynku oraz zatwierdzenia zaimplementowanych zmian poprzez testy zgodności wymiany dokumentów.

6.1.5.6.2. Procedura wprowadzania zmian w standardach technicznych systemu WIRE zawiera kroki jakie powinny wykonać OSP oraz operatorzy rynku, celem
wprowadzenia do systemu WIRE zmian określonych w tych standardach.

6.1.5.6.3. Procedurę wprowadzania zmian w standardach technicznych systemu WIRE OSP publikuje na swojej stronie internetowej.

6.2. System operatywnej współpracy z elektrowniami

6.2.1. Zadania systemu SOWE

6.2.1.1. System SOWE jest dedykowany do wymiany informacji technicznych pomiędzy służbami dyspozytorskimi OSP, a służbami ruchowymi wytwórców zarządzających JWCD.

6.2.1.2. Systemu SOWE jest dedykowany do zbierania, przekazywania i wymiany informacji na potrzeby zarządzania pracą JWCD w KSE.

6.2.1.3. System SOWE umożliwia wymianę informacji w fazach okresowego i bieżącego planowania dyspozycyjności poszczególnych jednostek wytwórczych oraz sterowania wytwarzaniem energii.

6.2.1.4. Szczegółowy opis i wymagania funkcjonalne systemu SOWE zawierają standardy techniczne systemu SOWE, które OSP publikuje na swojej stronie internetowej.

6.2.2. Architektura systemu SOWE

6.2.2.1. System SOWE obejmuje dwa moduły: centralny moduł komunikacyjny SOWE w wersji dla OSP i moduł zewnętrzny SOWE/EL w wersji dla podmiotów zarządzających JWCD.

6.2.2.2. Wymiana informacji pomiędzy modułem centralnym systemu SOWE oraz modułami SOWE/EL odbywa się w topologii „gwiazdy”, tzn. komunikacja możliwa jest tylko pomiędzy serwerem centralnym systemu SOWE znajdującym się u OSP, a serwerami lokalnymi systemu SOWE zlokalizowanymi w elektrowniach.

6.2.3. Struktura funkcjonalna i wymagania aplikacyjne SOWE

6.2.3.1. Moduł centralny, znajdujący się u OSP, realizuje odbieranie i wysyłanie dokumentów z/do systemów informatycznych SOWE/EL elektrowni z zachowaniem kontroli i zabezpieczeń przesyłanych danych.

6.2.3.2. Moduł centralny systemu SOWE zapewnia archiwizację wszystkich przesyłanych informacji oraz udostępnia archiwum dokumentów autoryzowanym użytkownikom.

6.2.3.3. Moduły lokalne SOWE/EL, zlokalizowane elektrowniach, umożliwiają dostęp do modułu centralnego oraz wymianę danych z zachowaniem standardów określonych dla systemu SOWE w zakresie struktury dokumentów, zabezpieczeń i kontroli przesyłanych danych.

6.2.3.4. Centrum Certyfikacji OSP (CCO) realizuje funkcje związane z zarządzaniem certyfikatami cyfrowymi wykorzystywanymi w systemie SOWE. Umożliwia
autoryzację certyfikatów menedżerów kolejek WebSphere MQ jednoznacznie identyfikujących serwery SOWE/EL.

6.2.3.5. Wymagania techniczne dla systemu SOWE są określone w pkt 2.2.3.9.

6.2.4. Zakres informacji przekazywanych przy wykorzystaniu SOWE

6.2.4.1. System SOWE umożliwia bezpośrednio przekazywanie przez służby dyspozytorskie OSP - KDM do służb ruchowych wytwórce DIRE planów obciążen JWCD na okresy 15-minutowe oraz poleceń ruchowych, a także umożliwia wymianę informacji pomiędzy służbami ruchowymi wytwórcy DIRE i służbami dyspozytorskimi OSP w zakresie dyspozycyjności jednostek wytwórczych, zdarzeń ruchowych i sieciowych. Szczegółowy zakres informacji wymienianych za pomocą systemu SOWE zamieszczono w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

6.2.5. Procedury systemu SOWE

6.2.5.1. Zakres procedur systemu SOWE

6.2.5.1.1. Zarządzanie konfiguracją systemu SOWE odbywa się zgodnie z procedurami regulującym procesy przyłączania nowych elektrowni, zarządzania zmianami w standardach oraz zmianami w konfiguracji.

6.2.5.1.2. OSP publikuje procedury dotyczące systemu SOWE na swojej stronie internetowej.

6.2.5.2. Procedura przyłączenia i akceptacji systemu informatycznego SOWE/EL do systemów informatycznych OSP dla SOWE/EL i SOWE

6.2.5.2.1. Przyłączenie i akceptacja systemu informatycznego SOWE/EL do systemu informatycznego OSP następuje po spełnieniu przez podmiot warunków określonych w procedurze przyłączania i akceptacji określonej przez OSP.

6.2.5.2.2. Procedura przyłączenia i akceptacji systemów SOWE ma zastosowanie w procesie uruchamiania systemów informatycznych SOWE elektrowni dysponujących Jednostkami Wytwórczymi Centralnie Dysponowanymi. Procedura obejmuje zagadnienia techniczne dotyczące współpracy systemów bezpieczeństwa i systemów wymiany informacji OSP i Elektrowni.

6.2.5.3. Procedura zarządzania uprawnieniami archiwum systemu SOWE

6.2.5.3.1. Autoryzacja użytkowników systemów informatycznych SOWE/EL następuje po spełnieniu przez podmiot warunków określonych w procedurze zarządzania uprawnieniami użytkowników archiwum systemu SOWE, opracowanej przez OSP.

6.2.5.3.2. Procedura zarządzania uprawnieniami archiwum systemu SOWE zawiera kroki jakie powinien wykonać administrator bezpieczeństwa elektrowni, w celu uzyskania dostępu do archiwum systemu SOWE dla reprezentantów
elektrowni upoważnionych do przeglądania dokumentów przechowywanych w archiwum systemu SOWE.

6.2.5.3.3. Archiwum systemu SOWE jest udostępniane wyłącznie upoważnionym do przeglądania dokumentów reprezentantom elektrowni, w zakresie dokumentów wymienianych pomiędzy OSP i elektrownią.

6.2.5.3.4. Procedurę zarządzania uprawnieniami archiwum systemu SOWE OSP publikuje na swojej stronie internetowej.

6.2.5.4. **Procedura wprowadzania zmian w standardach technicznych systemu SOWE**

6.2.5.4.1. Wprowadzenie zmian w standardach technicznych SOWE wymaga dostosowania systemów SOWE/EL przez elektrownie oraz zatwierdzenia zaimplementowanych zmian poprzez testy zgodności wymiany dokumentów.

6.2.5.4.2. Procedura wprowadzania zmian w standardach technicznych systemu SOWE zawiera kroki jakie powinni wykonać OSP oraz elektrownie, celem wprowadzenia do systemu SOWE zmian określonych w tych standardach.

6.3. **System nadzoru i zarządzania pracą KSE**

6.3.1. **Zadania systemu SCADA OSP**

6.3.1.1. System SCADA OSP jest systemem wspomagania dyspozytorskiego dedykowanym do prowadzenia ruchu i sterownia pracą KSE, w tym zdalnego sterowania obiektami KSE pozostającymi w dyspozycji OSP.

6.3.1.2. System SCADA OSP pozyskuje dane w trybie on-line z obiektów sieci elektroenergetycznej do centrów dyspozytorskich OSP.

6.3.1.3. System SCADA OSP pozyskuje dane w trybie on-line z systemów SCADA innych operatorów systemu, w tym operatorów systemów dystrybucyjnych.

6.3.2. **Architektura systemu SCADA OSP**

6.3.2.1. System SCADA OSP obejmuje system centralny dedykowany dla centrum dyspozytorskiego KDM oraz systemy obszarowe dedykowane dla centrów dyspozytorskich ODM.

6.3.2.2. Wymiana informacji w ramach SCADA OSP odbywa się pomiędzy systemem centralnym a systemami obszarowymi w topologii „gwiazdy”, tzn. komunikacja odbywa się wyłącznie pomiędzy systemem centralnym zlokalizowanym w centrum dyspozytorskim KDM, a systemami obszarowymi zlokalizowanymi w centrach dyspozytorskich ODM.

6.3.2.3. Wymiana informacji pomiędzy systemem SCADA OSP a systemami nadzorującymi pracę obiektów sieci elektroenergetycznej odbywa się pomiędzy:
(1) systemami obszarowymi zlokalizowanymi w centrach dyspozytorskich ODM a systemami zlokalizowanymi w obiektach elektroenergetycznych;

(2) systemem centralnym zlokalizowanym w KDM a systemami zlokalizowanymi w obiektach elektroenergetycznych.

6.3.2.4. Wymiana informacji pomiędzy systemem SCADA OSP a systemami SCADA OSD odbywa się pomiędzy systemami obszarowymi zlokalizowanymi w centrach dyspozytorskich ODM a systemami SCADA zlokalizowanymi w centrach dyspozytorskich OSD.

6.3.2.5. Wymiana informacji pomiędzy systemem SCADA OSP a systemami SCADA innych operatorów systemów przesyłowych krajów odbywa się pomiędzy systemem centralnym zlokalizowanym w centrum dyspozytorskim KDM a systemami SCADA zlokalizowanymi w centrach dyspozytorskich innych operatorów.

6.3.2.6. Systemy centralne i obszarowe SCADA OSP zawierają podsystem komunikacyjny służący do wymiany danych z innymi systemami SCADA w oparciu o sieć TCP/IP i protokół komunikacyjny ICCP.

6.3.3. Procedury dla systemu SCADA

6.3.3.1. Procedury wymiany informacji

6.3.3.1.1. Do przekazywania danych bezpośrednio z obiektów elektroenergetycznych do systemu SCADA OSP stosowany jest protokół DNP3 lub IEC60870-5-101 pracujący na łączach szeregowych. Dopuszcza się stosowanie łącz TCP/IP i protokołu IEC60870-5-104 po spełnieniu wymagań określonych indywidualnie dla każdego obiektu elektroenergetycznego.

6.3.3.1.2. Do przekazywania danych z systemów SCADA OSD służą łącza TCP/IP i protokół komunikacyjny ICCP (TASE.2). Dopuszcza się tymczasowe stosowanie łącz szeregowych na warunkach uzgodnionych przez OSP i OSD.

6.3.3.2. Zakres informacji w ramach systemu SCADA OSP

6.3.3.2.1. W ramach systemu SCADA OSP są pozyskiwane, przetwarzane i udostępniane dane pomiarowe dotyczące pracy KSE, których zakres, wymagania jakościowe i specyfikację określono w pkt 4.3.12.

6.3.3.3. Procedury przyłączeniowe

6.3.3.3.1. Przyłączenie systemów SCADA OSD do sieci WAN-BB OSP następuje po spełnieniu przez OSD warunków określonych w procedurze przyłączania podmiotu do sieci WAN-BB, którą OSP udostępnia zainteresowanym podmiotom.
6.3.3.3.2. Szczegółowe warunki przyłączenia systemu SCADA OSD są określone indywidualnie i przekazywane przez OSP dla każdego OSD.

6.4. System monitorowania parametrów pracy

6.4.1. Zadania systemu SMPP

6.4.1.1. System SMPP jest systemem akwizycji danych pomiarowych, zintegrowanym z regulatorem centralnym LFC. Jest on dedykowany do:

(1) oceny pracy JWCD w ramach systemu automatycznej regulacji częstotliwości i mocy,

(2) przekazywania informacji o stanie JWCD na potrzeby prowadzenia ruchu KSE,

(3) monitorowania parametrów pracy JWCD w czasie rzeczywistym na potrzeby prowadzenia bieżącej automatycznej regulacji częstotliwości i mocy przez regulator centralny LFC,

(4) dokonywania analiz pracy KSE, zgodnie z wymaganiami ENTSO-E.

6.4.1.2. Węzły lokalne systemu SMPP pozyskują w trybie on-line dane z układów automatyki blokowej jednostki wytwórczej i udostępniają je do węzła centralnego systemu SMPP.

6.4.1.3. Wężeł centralny systemu SMPP pozyskuje, w trybie on-line, dane z wszystkich węzłów lokalnych systemu SMPP, z systemów lokalnych OSP wartości sygnałów regulacyjnych i częstotliwości KSE oraz otrzymuje od systemów OSP plany pracy i parametry techniczne jednostek wytwórczych.

6.4.1.4. System SMPP umożliwia przekazywanie danych w trybie on-line z OSP do jednostek wytwórczych.

6.4.2. Architektura systemu SMPP

6.4.2.1. System SMPP obejmuje dwa moduły: węzeł centralny w wersji dla OSP i węzły lokalne zlokalizowane w elektrowniach.

6.4.2.2. Wymiana informacji pomiędzy węzłem centralnym a węzłami lokalnymi odbywa się w topologii „gwiazdy”, tzn. komunikacja możliwa jest tylko pomiędzy serwerem centralnym znajdującym się u OSP, a serwerami lokalnymi zlokalizowanymi w elektrowniach.

6.4.2.3. Węzły systemu SMPP zawierają podsystem komunikacyjny służący do wymiany danych w oparciu o sieć WAN.

6.4.3. Struktura funkcyjonalna SMPP

6.4.3.1. W systemie SMPP w relacji z elektrowni do OSP, z układów automatyki obiektowej każdej jednostki wytwórczej przesyłane są w trybie on-line wielkości określone zgodnie ze standardem dla systemu SMPP i regulatora
centralnego LFC, w tym między innymi: składowe mocy zadanej z regulatora centralnego LFC, wartości zadane mocy w torach regulacji jednostki wytwórczej, stany pracy regulacji oraz wartość sygnału w torze tych regulacji na jednostce wytwórczej.

6.4.3.2. Na podstawie zebranych danych system SMPP monitoruje pracę JWCD w trybie on-line według wskazanego kryterium, umożliwia analizę on-line stanów i parametrów JWCD w stosunku do wartości planowanych. oraz wylicza na bieżąco średnie energii na poszczególne bloki i odnosi je do wielkości planowanych.

6.4.3.3. Przetwarzane w systemie dane podlegają archiwizacji, system posiada narzędzia umożliwiające prezentację oraz eksport danych do innych systemów.

6.4.3.4. Akwizycja danych historycznych w relacji z elektrowni do OSP jest prowadzona w trybie off-line w celu uzupełniania brakujących danych w węźle centralnym systemu SMPP w trybie automatycznego uzupełniania brakujących danych lub na żądanie operatora węzła centralnego systemu SMPP.

6.4.4. **Procedury systemu SMPP**

6.4.4.1. **Procedury wymiany informacji**

6.4.4.1.1. Aktualne parametry bloku, pozyskane z systemów automatyki blokowej, przekazywane są do węzła lokalnego systemu SMPP, następnie zostają one przekazane do węzła centralnego systemu SMPP, w siedzibie OSP. Pozyskane dane są wykorzystywane dla potrzeb monitorowania pracy jednostek i wspomagania prowadzenia ruchu KSE, zgodnie w wytycznymi określonymi przez OSP w dokumentacji technicznej systemu SMPP.

6.4.4.2. **Procedury przyłączeniowe**

6.4.4.2.1. Przyłączenie węzła lokalnego SMPP do węzła centralnego systemu SMPP następuje po spełnieniu przez podmiot warunków określonych w specyfikacji technicznej dla węzłów lokalnych systemu SMPP i procedurze przyłączania SMPP, które OSP udostępnia zainteresowanym podmiotom.

6.4.4.2.2. Szczegółowe warunki przyłączenia węzła lokalnego systemu SMPP są określone indywidualnie i przekazywane przez OSP dla każdej elektrowni.

6.4.4.3. **Procedury wprowadzania zmian w strukturze SMPP**

6.4.4.3.1. Wprowadzanie zmian w standardach technicznych SMPP wymaga dostosowania przez elektrownie jednostek wytwórczych i węzłów lokalnych SMPP oraz zatwierdzenia zaimplementowanych zmian poprzez testy zgodności, zgodnie z procedurą przyłączania jednostek wytwórczych do SMPP.

6.4.4.3.2. Szczegółowe parametry konfiguracyjne węzła lokalnego SMPP są określone indywidualnie i przekazywane przez OSP indywidualnie dla każdej
6.5. Centralny system pomiarowo - rozliczeniowy

6.5.1. Zadania systemu CSPR

6.5.1.1. System CSPR jest dedykowany do wyznaczania ilości dostaw energii elektrycznej na potrzeby rozliczeń prowadzonych przez OSP.

6.5.1.2. System CSPR realizuje funkcję gromadzenia, przetwarzania i udostępniania danych pomiarowych i pomiarowo - rozliczeniowych.

6.5.2. Struktura funkcjonalna CSPR

6.5.2.1. Dane pomiarowe i pomiarowo - rozliczeniowe gromadzone w systemie CSPR pochodzą z systemu zdalnego odczytu danych pomiarowych OSP, z systemów OSD przeznaczonych do wyznaczania danych pomiarowo - rozliczeniowych reprezentujących dostawy energii we fragmentach sieci dystrybucyjnej nie objętej obszarem Rynku Bilansującego oraz z systemów informatycznych podmiotów rynku wykorzystywanych do gromadzenia i udostępniania danych pomiarowych nazywanych Lokalnymi Systemami Pomiarowo Rozliczeniowymi (dalej „systemy LSPR”).

6.5.2.2. Dane pomiarowe pozyskiwane do systemu zdalnego odczytu danych pomiarowych pochodzą z systemów自动化erejestracji danych umożliwiających dostęp do wielkości rejestrowanych przez układy pomiarowe.

6.5.2.3. Pozyskiwanie danych z systemów LSPR oraz systemów OSD do systemu CSPR oraz udostępnianie danych pomiarowych z systemu CSPR do systemów LSPR jest realizowane poprzez system WIRE.

6.5.3. Zakres informacji uzyskiwanych przy wykorzystaniu systemu CSPR

6.5.3.1. W procesie przeliczania danych, system CSPR przetwarza dane pomiarowe pochodzące z układów pomiarowo - rozliczeniowych i dane pomiarowo - rozliczeniowe reprezentujące dostawy energii we fragmentach sieci dystrybucyjnej nie objętej obszarem Rynku Bilansującego wyznaczane przez OSD oraz wykorzystuje algorytmy agregacji i wyznaczania dostaw energii elektrycznej.

6.5.3.2. Produktem uzyskanym w wyniku realizacji procesu przetwarzania danych pomiarowych i pomiarowo - rozliczeniowych przez system CSPR są wyznaczone ilości dostaw energii elektrycznej.

6.5.4. Procedury systemu CSPR

6.5.4.1. Proces przetwarzania danych realizowany przez system CSPR odbywa się w oparciu o jednolite standardy kodyfikacji Fizycznych Punktów Pomiarowych (FPP) oraz Miejsce Dostarczania Energii Rynku Bilansującego.
reprezentujących dostawy energii we fragmentach sieci dystrybucyjnej nie objętej obszarem Rynku Bilansującego (FDMB), które OSP publikuje na swojej stronie internetowej.

6.5.4.2. Szczegółowe zasady wymiany danych pomiarowych i pomiarowo-rozliczeniowych przy wykorzystaniu systemu CSPR są określone w IRiESP - Bilansowanie systemu i zarządzanie ograniczeniami systemowymi.

6.6. **Centralny system automatycznej regulacji częstotliwości i mocy**

6.6.1. **Zadania centralnego systemu automatycznej regulacji częstotliwości i mocy**

6.6.1.1. Automatyczna regulacja częstotliwości i mocy jest prowadzona przez aktywny regulator centralny. W ramach centralnego systemu automatycznej regulacji częstotliwości i mocy wyróżnia się dwa niezależnie pracujące regulatorzy centralne:

1. regulator centralny ARCM,
2. regulator centralny LFC, który docelowo zastąpi regulator centralny ARCM.

O wykorzystaniu ruchowym i aktywacji regula tora centralnego LFC lub regulatora centralnego ARCM decyduje operacyjnie OSP, w ramach procesu prowadzenia ruchu KSE.

6.6.1.2. W celu utrzymania zdolności do pracy w regulacji wtórnej i trójnej, wytwórca dostosuje, przyłączane do sieci jednostki wytwórcze do współpracy z regula torem centralnym LFC, nie później niż w okresie 16 miesięcy od daty wejścia w życie niniejszego wymogu, przy czym w tym przypadku nie mają zastosowania postanowienia pkt 2.2.3.1.2. Szczegółowy zakres harmonogram dostosowania jednostek wytwórczych, wytwórca ustali indywidualnie z OSP w okresie 3 miesięcy od daty wejścia w życie ww. wymogu.

W stosunku do jednostek wytwórczych, których eksploatacja zostanie zakończona:

1. nie później niż do dnia 31 grudnia 2015 r. albo,
2. po dniu 31 grudnia 2015 r., ale nie później niż do dnia 31 grudnia 2017 r., o ile istnieć będą istotne powody techniczno-ekonomiczne uzasadniające niepodjęcie działań dostosowawczych,

OSP, na wniosek wytwórcy, może dopuścić odstąpienie od wymogu przystosowania jednostek wytwórczych do współpracy z regulatorem centralnym LFC, uwzględniając wielkość dostępnej rezerwy mocy regulacyjnej w KSE i rozwój rynku usług systemowych.

6.6.1.3. Regulator centralny LFC i regulator centralny ARCM pełnią następujące funkcje:
(1) są wykorzystywane do wyznaczania i przesyłania sygnałów regulacyjnych w ramach aktywacji pasma regulacji wtórnej oraz zadawania obciążeń bazowych współpracujących z nimi jednostek wytwórczych.

(2) pozyskują dane o bieżącej częstotliwości w KSE i saldzie mocy KSE oraz informacje o planie generacji i saldzie wymiany.

(3) wypracowują w trybie on-line sygnały regulacyjne i rozsyłają je do jednostek wytwórczych.

6.6.2. **Architektura centralnego systemu automatycznej regulacji częstotliwości i mocy**

6.6.2.1. Architektura centralnego systemu automatycznej regulacji częstotliwości i mocy opartego na regulatorze centralnym ARCM.

6.6.2.1.1. Centralny system automatycznej regulacji częstotliwości i mocy oparty na regulatorze centralnym ARCM tworzą:

(1) regulator centralny ARCM, wypracowujący sygnały regulacyjne polegające zwiększenie lub zmniejszenie mocy czynnej generowanej przez jednostki wytwórcze w zakresie dedykowanego do tego celu pasma regulacyjnego,

(2) podsystem pomiarowo-komunikacyjny pozyskiwania i akwizycji danych opisujących bieżące saldo wymiany międzysystemowej i częstotliwość w cyklu jednosekundowym,

(3) podsystem informatyczny ustalający planowe saldo wymiany międzysystemowej,

(4) podsystem komunikacyjny dystrybucji sygnałów regulacyjnych z wykorzystaniem protokołu UTRT.

6.6.2.1.2. Konfiguracja regulatora centralnego ARCM oraz jego podsystemów zapewnia redundancję jego elementów w celu uzyskania niezawodności pracy centralnego systemu automatycznej regulacji częstotliwości i mocy.

6.6.2.2. Architektura centralnego systemu automatycznej regulacji częstotliwości i mocy opartego na regulatorze centralnym LFC.

6.6.2.2.1. Centralny system automatycznej regulacji częstotliwości i mocy oparty o regulator centralny LFC tworzą:

(1) regulator centralny LFC, wypracowujący indywidualne sygnały regulacyjne \(P_{w,\text{zadane}} \) polegające zwiększenie lub zmniejszenie mocy czynnej generowanej przez jednostki wytwórcze w zakresie dedykowanego do tego celu pasma regulacyjnego,

(2) podsystem pomiarowo-komunikacyjny pozyskiwania i akwizycji danych opisujących bieżące saldo wymiany międzysystemowej i częstotliwość w cyklu jednosekundowym,
6.6.2.2.2. Konfiguracja regulatora centralnego LFC i jego podsystemów zapewnia redundancję jego elementów w celu uzyskania niezawodności pracy centralnego systemu automatycznej regulacji częstotliwości i mocy.

6.6.3. Procedury wprowadzania zmian w realizacji automatycznej regulacji częstotliwości i mocy oraz w standardach centralnego systemu automatycznej regulacji częstotliwości i mocy

6.6.3.1. Wprowadzanie zmian w realizacji automatycznej regulacji częstotliwości i mocy oraz w standardach centralnego systemu automatycznej regulacji częstotliwości i mocy wymaga dostosowania przez elektrownie jednostek wytwórczych i węzłów lokalnych. Szczegółowe parametry konfiguracyjne węzła lokalnego centralnego systemu automatycznej regulacji częstotliwości i mocy są określone indywidualnie i przekazywane przez OSP indywidualnie dla każdej elektrowni.

6.6.3.2. Przyłączanie jednostek wytwórczych do nowego centralnego systemu automatycznej regulacji częstotliwości i mocy odbywa się po potwierdzeniu zgodności zaimplementowanych zmian w ramach testów funkcjonalnych i komunikacyjnych, zgodnie z procedurą przyłączania węzłów lokalnych do centralnego systemu automatycznej regulacji częstotliwości i mocy. Procedura ta zawiera kroki jakie powinny być wykonane przez OSP oraz wytwórcę celem implementacji zmian określonych w standardach.